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1. Introduction

Given a Boolean algebra B, the completion of B is denoted by r.o. (B). Formally,
r.o. (B) is defined as the Boolean algebra of regular open subsets of B (see [12,
p. 152]). Given a cardinal &, r.o. (B) is called k-distributive if and only if the
equality

H{Zua< } zz{ﬂua,m) ; feallla}

holds for every family (uq.; : ¢ € In & o < k) of members of B. It is well known
(see [12, p. 158]) that the following four statements are equivalent:

1. B is k-distributive.

2. The intersection of x open dense sets in BT (= B\ {0}) is dense.
3. Every family of x maximal antichains of BT has a refinement.
4. Forcing with B does not add a new subset of .

The distributivity number of B is defined as the least s such that r.o. (B) is
not k-distributive. The distributivity number of B is usually denoted by b (B).
We are interested in computing the distributivity number of algebras of the
type B¥/Fin. Here, B“ is the Boolean algebra of all functions f : w — B with
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pointwise operation. As usual, the support of an element f € B“ is the set of
all n € w for which f (n) # 0 € B. Finally, Fin is the ideal of all functions with
finite support and B“/Fin is the quotient algebra.

Boolean algebras of the type B¥/ Fin have been recently an object of study,
see for example [9], [1], [5], [4]. We are going to focus in some of the most
natural algebras B such as {0,1}, P (w), P (w) /fin and the atomless countable
Boolean algebra. The algebra B“/Fin for these Boolean algebras correspond
to the Stone-Cech remainders (X* = X \ X) of some well known spaces. It
is easy to see that {0,1}* /Fin is isomorphic to P (w) /fin and it is well known
that its distributivity number is denoted by b, that ¥; < h < ¢ and that ZFC
does not determine the exact value of . For example, Martin’s Axiom implies
h = ¢; on the other hand, h = N; holds in the Cohen model for the failure
of the Continuum Hypothesis. As {0,1}* /Fin is isomorphic to P (w) /fin it
follows that {0,1}* /Fin corresponds to the Stone-Cech remainder, w*, of the
compactification of the naturals. The study of the distributivity for this space
was initiated in [2]. (P (w))“ /Fin topologically corresponds to (Bw x w)*. The
topological correspondent of (P (w) /fin)* / Fin is (w x w*)* and one of the first
papers studying the distributivity of this space is [7] where this space is denoted
by w?*. Finally, one can choose to work with, A, the Boolean algebra of clopen
subsets of the Cantor set 2“ as the representative of the atomless countable
Boolean algebra; then one can see that A“/ Fin is isomorphic to the algebra of
clopen subsets of 3 (2 x w)\ (2% x w). This space is, in particular, co-absolute
with SR\ R. The study of the distributivity number of SR \ R was initiated
in [8].

2. Computing h (B“/ Fin).

Our terminology and notation are mostly standard and follows that of [12] and
[3]. We refer the reader to those sources for undefined notions here. The phrase
“for almost all” will mean “for all but, possibly, finitely many of”.

Since P (w) /fin is regularly embedded in B“/Fin for any Boolean algebra
B. In [1] the authors showed that B“/Fin can be written as an iteration of
P (w) /fin and an ultra-power of B modulo . For the sake of completeness we
present here their result together with their short proof.

PROPOSITION 2.1 ([1]). B*/Fin is forcing equivalent to the iteration

P (w) /inxB* /U,
where U is the P (w) /fin-name for the Ramsey ultrafilter added by P (w) /fin.
Proof. Define a function ® : B/ Fin — P (w) /finxB* /U by putting & (f) =

<supp N, [f]z,,>, where [fy, is a P (w) /fin-name for
{geB*:{new: f(n)=g(n)} eU}.
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It is easy to verify that ® is a dense embedding. O

A consequence of the regular embedding of P (w) /fin into B*/ Fin is that
b (B~/Fin) < (1)

for any Boolean algebra B. As we said before, for B = {0,1} ZFC does not
determines the value of h. One more comment we can make about this is that
the natural forcing to increase b is the Mathias forcing; thus in the Mathias
model b is No.

For B = A, the best known result is in [1]; it is a nice theorem which im-
proves the result in [8] which says that h (A“/Fin) = 8y in the Mathias model.

THEOREM 2.2 ([1]). b (A¥/Fin) < min {h,add (M)} .

In [11] we use a natural modification of Mathias forcing which increases
b (A¥/ Fin) the same way that Mathias forcing increases b; that is, we produce
a model where there is a tree m-base for A/ Fin of height ws without branches
of length wy. A tree m-base for a space X is a dense subset of the regular open
algebra of subsets of X which forms a tree when ordered by reverse inclusion.

The forcing used in [11] uses a lot of the topological structure of the reals
but in the general case it can be defined as follows: My is the forcing whose
conditions are pairs (s, B) where s is a finite subset of B* and B is a regular
open subset of B with s N B = () and with the ordering (s, B) < (r, A) if and
only if r C s CrUA and B C A. Recall that B C B is regular open if
whenever a < b and b € B we have a € B, and for every b ¢ B thereis a < b
such that B, N B =, where B, = {x € B: z < a}.

The first computation we do is for P (w)“ /Fin. We wish to thank Professor
Jorg Brendle for his help to fix a previous proof. This algebra is isomorphic to
the algebra P (w) /finxP (w).

PROPOSITION 2.3. b (P (w)“ /Fin) = b.

Proof. For the purpose of the proof, for a function f : A — w and A C w
denote by A/ the set {(n, f (n)) : n € A}. Then it is easy to see that the family
D={A7: Aew]”,fe€w} is adense subset of P (w)” /Fin.

It follows that b (P (w)“ /Fin) < b by (1). To prove the other inequality let
k < b and consider a family {A, : @ < k} of maximal antichains in D. Given
AT € Ao, let Cy ¢ be a maximal antichain in P (w)* /Fin below A/ and below
A,. Fix a maximal almost disjoint family B, ; = {B Cw:Bfe Ca}f} on A.
Since k < b there is B, ; which is a common refinement of the families B, ¢
for o < k.

Letting A, = {BﬁB :BeB.y& fe AO} we obtain a common refinement
for each A, as we wanted to show. O
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We pass now to compute b ((P (w) /fin)” / Fin); for short we write h (w?*),
see the introduction. Dow showed that a tree m-base for w?* cannot be ws-closed
and that Martin’s Axiom (actually p =) implies that the boolean algebra
(P (w) /fin)* /Fin (which by the way is isomorphic to P (w) /fin X fin) is c-
distributive, and hence b (wZ*) = ¢. We are showing now that exact value of
h (wz*) cannot be decided. At first glance one would think that b (wz*) =b;
however in the Mathias model they differ. To show that we are going to use a
game theoretical characterization of b (B). For more on games and distributi-
vity laws in Boolean algebras see [6].

Let us consider the following game first introduced in [10]. For a homoge-
neous Boolean algebra B and for any ordinal a, G (B, «) is the game of length
a between Player T and Player II, who alternatively choose non-zero elements
bé7 béf € B for 8 < a such that for 8 < 3 < «a:

I 11 I 11
bl > bl > bh, > bl

In the end, Player II wins if and only if the sequence of moves has no lower
bound (this might happen if at some step 8 < «, Player I does not have a legal
move).

LEMMA 2.4. h (B) is the minimum cardinal k such that in the game G (B, k)
Player II has a winning strategy.

The main result in [13] follows from the next two propositions which are
going to be used in the sequel. We introduce some notation needed. Firstly, S?
is the set of all ordinals o < wq with cf (o)) = w; while Pg denotes the countable
support iteration of length 8 < ws of Mathias forcing, M, and G, denotes the
P,-name for the P,-generic filter. Also, the quotient forcing P,/ G, is denoted
by Paw,. Recall that ultrafilters Uy and Uy are Rudin-Keisler equivalent if
exists a bijection f :w — w such that Uy = {f [U]: U € Up}. An ultrafilter R
is a Ramsey ultrafilter if for every k,n € w and every partition o : [w]" — k
there exists H € R homogeneous for g; that is, o | [H]" is constant. Ramsey
ultrafilters are also known as selective ultrafilters. See [12, p. 478] and [3, p.
235] for more on Ramsey ultrafilters.

PROPOSITION 2.5 ([13]). There exists an wy-club C C S? such that for every
a € C the following holds: If 1 is a Pay,-name such that Py, - “7 induces
a Ramsey ultrafilter on ([w]w)v[Ga] 7, then there is a Py, -name 7/ such that

Pow, IF “7 €V [GQH} , 7 and 7' generate the same ultrafilter on ([w]w)v[G“] 7,

PROPOSITION 2.6 ([13]). Suppose that V is a model of CH and that 7 is a M-
name such that M I+ “/ induces a Ramsey ultrafilter R on ([w]w)v”. Then

M Ik “U and R are Rudin-Keisler equivalent by some function f € (w“)v”,
where U is the Ramsey ultrafilter added by P (w) /fin.
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THEOREM 2.7. Assume V is a model of CH. If G is P, -generic over V', then
VIGIEH (wQ*) =N.

Proof. Suffices to define a winning strategy for Player II in the game
G((P (w) /fin)* /Fin,wi)

played in V [G]. In order to do that, fix a wi-club C' C S? as in Proposition
2.5. For every z € V[G], let o(x) = min{a <ws:2 € V[G,]} and fix a
' : w; — w1 X wy bijection such that T'(a) = (8,0) implies 8 < «. Since
V [Ga] F CH, for each o < wy, there is a function g, : w1 — V [G,] which
enumerates all triples (a, o, f) € V [G,] such that a € [w]”, o: [w]" — k for
some k,n € w and f:w — w is a function.

The winning strategy for Player II is as follows:

If <<pg,p£1> < w1> is a play, there is a € C such that <p§1 (n):£< w1>

generates Ramsey ultrafilters on ([w}w)V[G“] for each n € w such that any
)V[Ga]'

two of them are not Rudin-Keisler equivalent by any f € (w*

The a-th move of Player II in a given play <<p£,p§l> €< w1> is in such

a way that if I' (a) = (5,0), £ € C is minimal with the property that £ >
sup {0 (p}(n) :n < B & n ew)}, and g¢ (6) = (a, 0, f), then

1. pif(n) C* pl (n) for almost all n € w,

2. plI'(n) Caorptl (n)na=70,

3. plI (n) is p-homogeneous,

4. f [pi (n)] Npk (m) =* 0, for all m,n € w.

To see that this is possible suppose we have chosen pl! (k) for k < n satis-
tying (1), (2), (3) and (4) for i,5 < n:

£ PR @] npll () =" 0.

To choose pZ! (n) start by choosing some B? C pl (n) which is g-homogeneous
and either B)! C a or B! Na = (. Then we keep choosing sets B}, for m >
n as follows: Assuming Bj, has been defined, let By, | be B}, if f[B];] N
pl (m+ 1) =* 0, otherwise let BZ ., be some infinite subset of B7, such that
pL(m+1)\ f[BL,i] #* 0 and shrink pl, (m+1) to become pl (m+1) \
f [B;LT +1]. (Here we abuse of the notation and we call this new set again
pl (m +1).) Finally let B be some infinite B C* B, for all m > n.
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Since the set f[B] is almost disjoint from each p! (m) for m > n and the new
sets pl! (m) are going to be subsets of p% (m) the clause (4) will be preserved
if we let pZf (n) be any infinite subset of B.

Notice that the fact that C' is an wi-club implies that the strategy is as
desired.

To finish the proof we show that this strategy is a winning strategy for
Player II. Suppose that (pg: f < wi) are the moves of Player II according to
the strategy, and suppose that the game is won by Player I. Then, there exists
r € V[G] such that r(n) € [w]* for almost all n € w and r (n) C* pg(n) for
almost all n € w and all § < w;. Fix o € C and Ramsey ultrafilters U (n) on

([w]w)V[GC'] for n < w such that each U (n) is generated by (ps(n): 0 < w1)
and no two of them are Rudin-Keisler equivalent for any f € w* NV [G,].
Then U (n) is generated by r(n). By Proposition 2.5, € V [Gn+1] and by
Proposition 2.6 U (n) is Rudin-Keisler equivalent to & by functions in w® N
V' [G4]. However, by construction this is impossible. O

3. Final remarks

The results presented here can be the beginning of a whole research on the
cardinal invariants of algebras of the type B/Z where B is a subalgebra of P(w)
and 7 is an ideal over the natural numbers. As an instance of this, recall
that by a result of Mazur an ideal Z is an F, ideal if and only if it is equal
to Fin(p) = {I Cw: ¢ (I) < oo}, for some lower semicontinuous submeasure
. This can be used to easily show that P (w) /Z is o-closed and hence hz =
h (P (w)/T) > Ny. We would like to know how to compute hz for F, ideals Z.

The base tree matix lemma of Balcar, Pelant and Simon [2] have proved to
be an important tool, so we ask:

PROBLEM 3.1: For which ideals is the base tree matrix lemma still true for
P(w)/I?

PROBLEM 3.2: Does the base tree matrix lemma implies that the collapse of ¢
to the respective h?

PROBLEM 3.3: What is the relationship between h and bz for F, ideals Z7

Going back to P (w)“ /Fin, observe that if A is a maximal almost disjoint
family of subsets of w and for each A € A we define f4 € P (w)” by

w, ifne A
fA(”):{ 0, ifnéd.

Then {fa: A€ A} is a maximal antichain in P (w)” /Fin. It follows that
a(P (w)*” /Fin) < a.
PROBLEM 3.4: Does a < a(P (w)” /Fin)?
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PROBLEM 3.5: Does b < a (P (w)“ /Fin)?

Similar arguments to the above one shows that

p (P (w)” /Fin) < p,t(P (w)” /Fin) < t and s (P (w)” /Fin) < s.

PROBLEM 3.6: Does t (P (w)* /Fin) > 7
PROBLEM 3.7: Does s (P (w)“ /Fin) > s?

Acknowledgements. We would like to thank M. Hrusak and J. Brendle for
useful discussions on this topic.
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