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We explore different generalizations of the classical concept of independent families 
on ω following the study initiated by Kunen, Fischer, Eskew and Montoya. We show 
that under (D�)∗κ we can get strongly κ-independent families of size 2κ and present 
an equivalence of GCH in terms of strongly independent families. We merge the two 
natural ways of generalizing independent families through a filter or an ideal and 
we focus on the C-independent families, where C is the club filter. Also we show a 
relationship between the existence of J-independent families and the saturation of 
the ideal J.

© 2024 Elsevier B.V. All rights reserved.

0. Introduction

Independent families are objects with strong combinatorial properties. Since their appearance in [2] and 
[6], these families have been related to many other objects, such as almost disjoint families, ultrafilters and 
ideals. See for example [4].

Independent families are naturally defined over the set of non-negative integers ω; however, it is not 
clear what their natural generalization to larger cardinals should be. An independent family on ω is a 
family I ⊆ P(ω) such that if S, T ⊆ I are finite and disjoint subfamilies then 

⋂
S \

⋃
T is infinite (we 

call this set a finite Boolean combination from I). In other words, on ω, a family is independent if all its 
finite Boolean combinations are infinite. When we move to the case of an arbitrary cardinal κ the notion 
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of independence could be generalized in at least two different ways: the first would be by allowing larger 
Boolean combinations, that is, not only finite Boolean combinations but also the ones of length less than 
or equal to λ for some given λ and the second way would be to ask that finite Boolean combinations not 
only have infinite cardinality (or cardinality κ) but that they fulfill some notion of largeness.

The first of these generalizations that we are aware of was studied by Kenneth Kunen [11]. Among other 
things, he proved the existence of maximal σ-independent families of subsets of some cardinal χ > ω1 and 
he proved that the existence of such families is equiconsistent with the existence of a measurable cardinal. 
A more recent study of this kind of generalizations was started by Vera Fischer and Diana Montoya in [3]
and then continued by Monroe Eskew and Vera Fischer in [1]. In this last referred work, the authors study 
higher analogous of the classical notion of maximal independent family on ω. As in some other works, they 
point out that the Axiom of Choice does imply maximal independent families exists as long as the Boolean 
combinations under consideration are finite; however, the panorama is totally different if we consider longer 
Boolean combinations. For instance, they show, in addition to other very remarkable results, that if P is a 
nontrivial forcing either of size less than κ or satisfying the ν-cc for some ν < κ, then P forces that there 
are no maximal strongly κ-independent families. On the other hand, if κ is a supercompact cardinal, then 
there is a forcing extension in which for all κ-directed-closed posets P that force 2κ < κ+ω, P forces that 
there are maximal strongly κ-independent families.

In the first section we define strongly κ-independent families, we justify the reason for considering Boolean 
combinations of length less than κ and we give a characterization of the Continuum Hypothesis in terms 
of the existence of one of these families for κ = ω1, even more, we show that 2κ = κ+ is equivalent to the 
existence of a certain strongly κ+-independent family (see Theorem 1.8).

Perhaps the most important result of section one is the fact that the existence of a (D�)∗κ-sequence implies 
the existence of a strongly κ-independent family of maximum size. With the help of Shelah’s principle (D�)∗κ
we can offer a wide variety of cardinals for which the existence of a strongly κ-independent family was 
unknown.

In this section we also show a relationship between the existence of some of these families and the 
existence of a strongly inaccessible cardinal.

In the second section, we study a second generalization of independent families, what we have called F-
independent or J-independent families, depending on whether F is a filter or J is an ideal on a given cardinal 
κ. We say that a family is F-independent (or J-independent) if every finite Boolean combination is in F+ (or 
in J+ respectively). For a filter F some conditions on it are shown so that there are F-independent families; 
in this same direction we show that strongly F-independent families can also exist, i.e., a generalization in 
two senses of classical independent families. Later we will focus on the club filter, closed and unbounded sets, 
and show some similarities between this new notion of independence and the classical one. Finally, for an 
ideal J ⊆ P(κ), we show that exists a relationship between the existence (or non-existence) of J-independent 
families and the saturation of J, therefore with some properties of the cardinal κ.

Throughout the article we talk about families with a certain property of independence and we also talk 
about ideals, we will use the font I and J to denote independent families (or so) and the font I or J to 
denote ideals.

1. Strongly independent families

For a cardinal κ and A ⊆ κ, we will use the usual notation A0 to denote A and A1 to denote κ \A. If X
and Y are sets and s is a function, we will use the notation s; X → Y to express that s is a partial function2

from X to Y , i.e., dom(s) ⊆ X and s takes its values on Y . For a given set I and a cardinal λ, we will 

2 Note the semicolon instead of the colon.
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denote the collection of partial functions from I to 2 = {0, 1} of size less that λ, {s; I → 2 : |s| < λ}, by 
FF<λ(I).

The rest of the terminology is canonical and it is the one followed by current literature in set theory.

Definition 1.1. If I is a family of subsets of a cardinal κ and h; I → 2, then Ih =
⋂

I∈dom(h) I
h(I) is the 

Boolean combination of I determined by h. If h is finite then we say that Ih is a finite Boolean combination. 
If h has cardinality λ we say that Ih is a Boolean combination of length λ.

Given a cardinal μ, the set whose elements are all Boolean combinations from I of length less than μ is 
the μ-envelope of I and we denote it by ENV<μ(I).

Definition 1.2. Let μ and κ be infinite cardinals with μ ≤ κ and let I ⊆ P(κ). Then I is (μ, κ)-independent
if every Boolean combination of length less than μ of elements of I has size κ, i.e., ENV<μ(I) ⊆ [κ]κ.

As mentioned in the introduction, Kunen was the first to study systematically (μ, κ)-independent families. 
He obtained some very deep results, one of which is the following:

Theorem 1.3. [11] The existence of maximal (ω1, 2ω1)-independent family is equiconsistent with existence of 
a measurable cardinal.3

Moreover, Kunen proved that if λ is strongly compact, then there is a forcing extension such that there 
is a maximal (ω1, χ)-independent family for all χ ≥ λ such that cof(χ) ≥ λ. Although this result is highly 
remarkable, note that the existence of a maximal (ω1, 2ω1)-independent family is not directly related, at 
least not in an obvious manner, to the existence of a (ω1, ω1)-independent family. In general, the existence of 
a maximal (μ, κ)-independent family with μ < κ does not seem obviously related to the existence of (μ, μ)-
independent families or (κ, κ)-independent families. Furthermore, while it is true that (μ, μ)-independent 
families are implicitly mentioned in Kunen’s paper, in general, most of his constructions of (μ, κ)-independent 
families are such that μ < κ; consequently, some portion of his work does not allude to (μ, μ)-independent 
families, which are the families that will interest us the most in this article.

In order to shorten the notation, we will employ the one used in [3], where κ-independent abbreviates 
(ω, κ)-independent and strongly κ-independent abbreviates (κ, κ)-independent. Note that with the conven-
tion we have just adopted, what we have called an independent family in the introduction turns out to be 
a ω-independent family.

Normally, after definitions, examples come; instead we now present a typical example of the classical 
case of an ω-independent family. Latter we shall use it to give examples of the generalizations introduced 
in Definition 1.2.

Example 1.4. Let pn be the n-th prime number and Cn = {mpn : m ∈ ω}. The family I = {Cn : n ∈ ω} ⊆
[ω]ω is ω-independent.

The family in the previous example is a ω-independent family such that Ih = ∅ for any infinite Boolean 
combination h; ω → 2 such that h−1[{0}] is infinite. Nevertheless, this does not mean that this family is not 
strongly ω-independent, since in the case of κ = ω, κ-independence and strongly κ-independence agree (it 
is also the unique cardinal κ where they do). It is easy to observe that for any infinite ω-independent family 
I there exists h; I → 2 infinite such that Ih = ∅. In general, we restrict ourselves to Boolean combinations 
of length less than κ because if I is a κ-independent family of cardinality at least κ, there is h; I → 2, with 
|h| = κ, such that Ih = ∅.

3 This is Theorem 2 in [11], although a different notation is used there.
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The following question naturally arises: For which cardinals κ does there exist (or may exist) a strongly 
κ-independent family, and for which ones do there exist large strongly κ-independent families, that is, of 
cardinality 2κ? Fischer and Montoya in [3] provided a partial answer to this question, which has inspired 
us to use a guessing principle to construct strongly κ-independent families.

Definition 1.5. [14] Let κ be a cardinal. We say that a sequence 〈Sα : α ∈ κ〉 is a (D�)∗κ-sequence if:

(1) For every α ∈ κ, we have that Sα ⊆ P(α) and |Sα| < κ.
(2) For every X ⊆ κ, the set {α ∈ κ : X ∩ α ∈ Sα} is club in κ.

The existence of a (D�)∗κ-sequence will be denoted simply as (D�)∗κ.

Since the principle (D�)∗κ is not very well known, we decide to include the proof of the next proposition, 
even though it is essentially a modification of the classical result that ♦ implies CH.

Proposition 1.6. Let κ and λ be cardinals such that λ < κ and κ is regular. Then (D�)∗κ implies 2λ ≤ κ.

Proof. Note that if X ⊆ λ and α > λ, then X ∩ α = X, thus, as {α ∈ κ : X ∩ α ∈ Sα} is club, 
CX = {α ∈ κ : X ∈ Sα} is too, in particular CX �= ∅. Now note that:

|
⋃

λ<α<κ

Sα | =
∑

λ<α<κ

|Sα| = κ,

but by the previous, every X ⊆ λ satisfies that X ∈
⋃

λ<α<κ Sα, hence P(λ) ⊆
⋃

λ<α<κ Sα and consequently 
2λ ≤ κ. �

With the help of the principle (D�)∗κ we show the possibility of having κ-strongly independent families. As 
we remark in the introduction, this may provide a wider variety of cardinals where κ-strongly independent 
families exist.

Proposition 1.7. Let κ be an uncountable regular cardinal. Then (D�)∗κ implies the existence of a strongly 
κ-independent family of cardinality 2κ.

Proof. Let 〈Sα : α ∈ κ〉 be a (D�)∗κ sequence and let C be defined as follows:

C = {〈γ,A〉 : γ ∈ κ ∧A ⊆ Sγ}.

Since |Sα| < κ for every α ∈ κ, by Proposition 1.6,

|C| =
∑
α∈κ

2|Sα| ≤
∑
α∈κ

κ = κ

and it is also clear that κ ≤ |C|, we conclude that |C| = κ. Thus constructing a strongly κ-independent 
family can be done with subsets of C (with Boolean combinations computed in C).

For every X ⊆ κ let YX be defined as follows:

YX = {(γ,A) ∈ C : X ∩ γ ∈ A}.

Aiming to prove that I = {YX : X ⊆ κ} is strongly κ-independent, set {Xi : i ∈ I0}, {Zj : j ∈ I1} ⊆ P(κ)
two disjoint collections, with |I0|, |I1| < κ.
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For every pair i, i′ ∈ I0 with i �= i′ let γi,i′ ∈ κ be such that

Xi ∩ γi,i′ �= Xi′ ∩ γi,i′ .

Observe that if γ ≥ γi,i′ then Xi ∩ γ �= Xi′ ∩ γ; analogously for j, j′ ∈ I1, with j �= j′ let αj,j′ be such that

Zj ∩ αj,j′ �= Zj′ ∩ αj,j′ .

Finally if i ∈ I0 and j ∈ I1, let βi,j ∈ κ be such that

Xi ∩ βi,j �= Zj ∩ βi,j .

If we define B ⊆ κ as:

B = {γi,i′ : i, i′ ∈ I0 ∧ i �= i′} ∪ {γj,j′ : j, j′ ∈ I1 ∧ j �= j′} ∪ {γi,j : i ∈ I0 ∧ j ∈ I1},

it is clear that |B| < κ and, as κ is regular, there exists γ0 ∈ κ such that B is bounded by γ0. Now, if γ ∈ κ

is larger that γ0, then this one satisfies the following:

(1) Xi ∩ γ �= Xi′ ∩ γ if i, i′ ∈ I0 with i �= i′.
(2) Zj ∩ γ �= Zj′ ∩ γ if j, j′ ∈ I1 with j �= j′.
(3) Xi ∩ γ �= Zj ∩ γ if i ∈ I0 with j ∈ I1.

For every i ∈ I0, consider Di = {γ ∈ κ : Xi ∩ γ ∈ Sγ}, which is a club, now put D =
⋂

i∈I0
Di and let 

γ ∈ D such that γ > γ0.
Let Aγ ⊆ Sγ be defined as:

Aγ = {Xi ∩ γ : i ∈ I0}.

So we have that (γ, Aγ) ∈ YXi
for every i ∈ I0 and (γ, Aγ) �∈ YZj

for every j ∈ I1. This proves that:

(γ,Aγ) ∈
⋂
i∈I0

YXi
\
⋃
j∈I1

YZj

and as this happens for every γ ∈ D such that γ > γ0, then:

∣∣ ⋂
i∈I0

YXi
\
⋃
j∈I1

YZj

∣∣ = κ,

which finishes the proof. �
If κ is strongly inaccessible then 〈P(α) : α ∈ κ〉 turns out to be a (D�)∗κ-sequence, hence the previous 

theorem in particular implies that for every strongly inaccessible cardinal κ there is a large strongly κ-
independent family, which is a result obtained by Fischer and Montoya in [3] and which proof is in turn 
inspired by Hausdorff’s original proof that there are ω-independent families of size c [6].

In a former version of this paper, in order to obtain previous proposition, we used the well known ♦∗(κ). 
By a famous theorem of Jensen [8], under V = L, the principle ♦∗(κ) holds on every successor cardinal. 
We thank Assaf Rinot for pointing us Shelah’s paper [14], so we realized we actually offer a slightly wider 
spectrum of cardinals for which there are consistently (large) strongly independent families on them without 
rallying on a very strong hypothesis as V = L. For instance, in [13], H. Mildenberger and S. Shelah, in their 
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Fact 2.9, proved that ♦∗(κ) is equivalent to (D�)∗κ for successor cardinals. However, R. Jensen and K. Kunen 
show in [9] that for limit cardinals, they are not equivalent. This is because if κ is ineffable (in particular, 
if κ is measurable), then ♦∗(κ) fails, while (D�)∗κ holds due to κ being strongly inaccessible.

On the other hand, the existence of strongly κ-independent families, where κ is a successor cardinal, is 
also closely related to the Generalized Continuum Hypothesis.

Theorem 1.8. Let κ be an infinite cardinal. The following two conditions are equivalent.

(1) There is a strongly κ+-independent family of cardinality κ.
(2) The equality 2κ = κ+ is true.

Proof. (1) ⇒ (2). Let I = {Xα : α ∈ κ} a strongly κ+-independent family. For all h ∈ 2κ we have that 
Ih has cardinality κ+ and it is clear that if h, g ∈ 2κ are different then Ih and Ig are disjoint. For every 
h ∈ 2κ, let xh ∈ Ih; then the set {xh : h ∈ 2κ} is a subset of κ+ and has cardinality 2κ, so 2κ ≤ κ+ and 
therefore 2κ = κ+.

(2) ⇒ (1). Let f : κ+ → 2κ × κ+ be a bijection (considering 2κ as the set of all functions from κ to 2). 
For every h ∈ 2κ, let Xh = f−1({h} × κ+) and for every α ∈ κ let Iα be defined as follows:

Iα =
⋃{

Xh : h ∈ 2κ \ {1} ∧ h(α) = 0
}
,

where 1 denotes the function f : κ → 2 with constant value 1.
Let I = {Iα : α ∈ κ}. It is clear that if h ∈ 2κ \ {1} then Ih ⊇ Xh and, as |Xh| = κ+, we have that 

|Ih| = κ+, which proves that I is strongly κ+-independent. �
The following results are simple corollaries of Theorem 1.8.

Corollary 1.9. There exists an infinite strongly ω1-independent family if and only if CH is satisfied, thus, 
the existence of an infinite strongly ω1-independent family is independent from ZFC.

Corollary 1.10. Let κ be an inaccessible cardinal (limit and regular) such that for every infinite cardinal 
λ < κ it exists a strongly λ+-independent family of cardinality λ, then κ is strongly inaccessible.

Proof. We only need to verify that κ is a strong limit cardinal. Let λ ∈ κ; as κ is limit it follows that 
λ+ < κ. On the other hand, since there exists a λ+-strongly independent family of size λ, by Theorem 1.8, 
2λ = λ+ and so 2λ < κ, which finishes the proof. �
Corollary 1.11. If κ is inaccessible and for every λ < κ there is a strongly λ-independent family of cardinality 
λ, then κ is strongly inaccessible.

Although we already know some sufficient conditions on κ for the existence of strongly κ-independent 
families, an interesting property of these families is that the collection of all such families does not satisfy 
the conditions to apply Zorn’s Lemma (unlike classical independent families), which is the standard way to 
prove the existence of maximal objects with some property.

Definition 1.12. A strongly κ-independent family I is maximal if there is no other strongly κ-independent 
family that properly extends it.
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Kunen proved that if κ is regular, 2<κ = κ, and J is a κ+-saturated (see below Definition 3.1) κ-complete 
ideal on κ with B(FF<κ(2κ)) isomorphic to P(κ)/J, then there is a maximal strongly κ-independent family.4
From this, he deduces that if κ is measurable over M , then there is a forcing extension M [G] such that κ is 
strongly inaccessible in M [G] (not necessarily measurable), and there is a maximal strongly κ-independent 
family. Reciprocally, Kunen also showed that if κ > ω is regular and there exists a strongly κ-independent 
family, then 2<κ = κ and there is a non-trivial κ+-saturated κ-complete ideal over κ. The existence of such 
ideal has the consistency strength of the existence of a measurable cardinal, see [10, p. 213]. Another recent 
result in the same direction is the following:

Theorem 1.13. [1] Let κ be a supercompact cardinal.

(1) There is a forcing extension in which for all κ-directed closed posets P that force 2κ < κ+ω, they force 
the existence of strongly κ-independent families.

(2) Suppose GCH and κ1 > κ is measurable. Then there are generic extensions in which there are two 
maximal strongly κ-independent families of different cardinalities.

However, it remains open whether it is consistent that there exists a cardinal κ such that the minimal 
cardinality of a maximal strongly κ-independent family is strictly between κ+ and 2κ; this was asked by 
Eskew and Fischer in [1].

Trivially, every strongly κ-independent family is κ-independent. However, it is straightforward to con-
struct (maximal) κ-independent families that are not strongly κ-independent.

Proposition 1.14. For every infinite cardinal κ > ω there exists a κ-independent family that is not strongly 
κ-independent.

Proof. We know that there exists a bijection between κ and ω×κ, so we are going to construct the desired 
family on κ × ω. For every n ∈ ω let In = κ × Cn, where the Cn are as in the Example 1.4, and let 
I = {In : n ∈ ω}.

Clearly if h; ω → 2 is finite, then for every α ∈ κ we have that ({α} ×ω) ∩Ih is infinite, in particular Ih

has size κ. On the other hand, if h : ω → 2 is such that h−1[{0}] is infinite, then for every α ∈ κ we have 
that ({α} × ω) ∩ Ih = ∅, which implies that Ih = ∅, thus I is as we wanted. �

It is natural to ask if consistently there is a cardinal κ with nice reflection properties or some sort of 
compactness principle for which the fact that the finite Boolean combinations are unbounded implies that 
every Boolean combination of length less than κ is also unbounded, however Proposition 1.14 answers this 
in the negative since in particular it implies that on every cardinal κ there is a family I such that every finite 
Boolean combination is unbounded but plenty of its countable Boolean combinations are empty. Moreover, 
the family constructed in the proof of Proposition 1.14 can be extended to a maximal κ-independent family 
J , and since I ⊆ J , then J is not strongly κ-independent either, thus we have the next corollary.

Corollary 1.15. For every infinite cardinal κ > ω there exists a maximal κ-independent family that is not 
strongly κ-independent.

As in the classical case of κ-independent families, a standard diagonalization argument shows that strongly 
κ-independent families small in cardinality are not maximal, we add here a proof for completeness.

4 Here B(FF<κ(2κ)) denotes the unique complete Boolean algebra such that FF<κ(2κ) is densely embedded.
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Proposition 1.16. If I is a strongly κ-independent family such that |I| < κ, then there exists a strongly 
κ-independent family J such that I � J , i.e., I is not maximal as a strongly κ-independent family.

Proof. Let I = {Iα : α ∈ λ} with λ < κ and for each h : λ → 2 let Xh = Ih. Now each set Xh is of 
cardinality κ and if h, g ∈ 2λ are different then Xh ∩Xg = ∅, this implies that 2λ ≤ κ. Let 〈Yα : α ∈ κ〉 be 
an enumeration of {Xh : h ∈ 2λ} such that every Xh appears κ times. Let a0, b0 ∈ Y0 be such that a0 < b0
and suppose that aβ and bβ have been already defined for all β < α. Since Yα has cardinality κ there are 
aα, bα ∈ Yα such that for all β ∈ α it holds that aβ, bβ < aα and also aα < bα. Now let Z = {aα : α ∈ κ}. 
By the construction of Z we have that Z ∩Xh and (κ \ Z) ∩Xh have cardinality κ for all h ∈ 2λ, that is, 
I ∪ {Z} is a strongly κ-independent family. �

Note that the above proof is not applicable to strongly κ-independent families of cardinality κ. Besides 
that, what is established by Proposition 1.16 does not follow from the fact that every κ-independent family 
I of size smaller than κ can be properly extended to another κ-independent family J , since, in principle, 
there is nothing to guarantee that the κ-independent family J is indeed strongly κ-independent.

The following shows, in the same direction of Proposition 1.16, that another class of strongly independent 
families are not maximal neither.

Definition 1.17. Let κ be an infinite cardinal.

(1) Let F ⊆ P(κ) and X ⊆ κ, we say that X splits F if Y ∩X and Y \X have size κ for all Y ∈ F .
(2) A family R ⊆ P(κ) is unsplittable (or reaping) if there is not X ⊆ κ that splits R.
(3) r(κ) is the smallest cardinality of a unsplittable family on κ.

Theorem 1.18. [3] Let κ be an infinite regular cardinal. If I is a strongly κ-independent family such that 
|{Ih : h; I → 2 ∧ |h| < κ}| < r(κ) then I is not maximal.

In the next section we take a different approach to generalized the classical case. Again the property of 
being maximal for those is perhaps even harder. For example, we were unable to prove that a countable 
C-independent family cannot be maximal. See Theorem 2.10.

2. F-independent families

Let F be a filter on κ. A subset X ⊆ κ is F-positive if X ∩ Y �= ∅ for every Y ∈ F; we denote the family 
of F-positive subsets by F+. If J ⊆ P(κ) is an ideal then J+ = {X ⊆ κ : X �∈ J}.

If F a filter on a cardinal κ, we denote by F∗ its dual ideal, i.e., the ideal {X ⊆ κ : κ \X ∈ F}.

Definition 2.1. A family I ⊆ P(κ) is F-independent if every finite Boolean combination of I is in F+. 
Similarly if J is an ideal then I is J-independent if every finite Boolean combination of I is in J+.

Note that once we fix a filter F, we know the cardinal κ it is on since 
⋃
F = κ; in this way, the most 

natural is to define a F-independent family as a subfamily of P(κ). However, the case of ideals is a little 
more subtle since an ideal itself does not remember the cardinal it is on. For example, if J ⊆ P(ω) is an ideal, 
then in particular J ⊆ P(ω1), so in this case when talking about a J-independent family, there is certain 
ambiguity regarding which cardinal the family should be on and in particular how the Boolean combinations 
are taken. To avoid this ambiguity, and as we did in Section 1, when we talk about a J-independent family 
I and indicate that I ⊆ P(κ) we will implicitly assume that the Boolean combinations are taken in κ.
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A similar issue arises when J is an ideal and we want to talk about its dual filter as we need to know 
the cardinal κ on which the complements of elements of J are taken. To solve this, when we indicate that 
J ⊆ P(κ) is an ideal and we talk about its dual filter, we will assume that this filter is defined on κ.

Note that a family is F-independent if and only if it is F∗-independent. On the other hand, if Fr is the 
Fréchet filter (on ω), then a family is Fr-independent if and only if it is ω-independent. It is also clear that 
if I is a F-independent family and X ∈ I, then X is F-double positive, that is, X, κ \X ∈ F+, consequently 
if F is an ultrafilter, there are no F-independent families. The natural question is to know for which filters 
(or ideals) F ⊆ P(κ) (in addition to the Fréchet’s one) there is a F-independent family.

Proposition 2.2. Let F be a principal filter, i.e., F = {A ⊆ κ : B ⊆ A} for some B ⊆ κ. Then:

(1) If B is finite then there are not F-independent infinite families. Furthermore, if |B| = n, there are not 
F-independent families of cardinality n.

(2) If |B| = λ ≥ ω, then there exists an F-independent family I of cardinality 2λ. On the other hand, if 
J ⊆ P(κ) with |J | ≥ (2λ)+, then J is not F-independent.

Proof. (1) Note that F+ = {X ⊆ κ : X∩B �= ∅}. Let B = {x0, . . . , xn−1} and suppose that X0, . . . , Xn−1 ∈
I are all distinct, where I is an F-independent family. For each i ∈ n, if xi ∈ Xi let h(i) = 1 and h(i) = 0
otherwise; so we have that xi �∈ X

h(i)
i . Then for every x ∈ B we have that:

x �∈
⋂
i∈n

X
h(i)
i = Ih,

so Ih ∩B = ∅ and therefore Ih �∈ F+, which contradicts the fact that I is F-independent.
(2) Again note that F+ = {X ⊆ κ : X ∩ B �= ∅}. Now let I = {Xα : α ∈ 2λ} be an independent family 

of subsets of B and for each α ∈ 2λ let Yα = Xα ∪ (κ \B) and let Î = {Yα : α ∈ 2λ}. Clearly if h; 2λ → 2 is 
finite then Ih ⊆ Îh and as I is independent on B we have that:

∅ �= B ∩ Ih = B ∩ Îh,

which proves that Îh ∈ F+, therefore Î is F-independent.
If J ⊆ P(κ) has cardinality at least (2λ)+, as |B| = λ, there exist X, Y ∈ J distinct such that X ∩B =

Y ∩B, but then (X \ Y ) ∩B = ∅, which proves that X \ Y �∈ F+, thus J is not F-independent. �
As anticipated, the two generalizations of independence studied in this work are compatible with each 

other, that is, we can merge the two notions in order to obtain families with more combinatorial properties.

Definition 2.3. Let F ⊆ P(κ) be a filter (respectively J ⊆ P(κ) an ideal). A family I ⊆ P(κ) is strongly 
F-independent (respectively strongly J-independent) if every Boolean combination of length less than κ of 
I is in F+ (respectively in J+).

We will study a little more of these families below.

2.1. C-independent families

For each regular cardinal κ let Cκ ⊆ P(κ) be the club filter, that is, the filter generated by closed and 
unbounded sets (when the context is clear we will call Cκ simply as C). Cω1 is a very important filter in the 
study of the combinatorics of ω1, therefore a couple of questions arise naturally: Are there Cω1-independent 
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families? Is every maximal C-independent family strongly C-independent? Answers to these questions can 
be found in Proposition 2.6 and Corollary 2.7, respectively.

First of all, let us note that as for every filter F, the union of a chain of F-independent families is again 
an F-independent family. Therefore, if there exist F-independent families, then there are maximal ones (by 
Zorn’s Lemma).

Remember that C-positive sets are called stationary sets; one of the most important results about sta-
tionary sets is the following:

Lemma 2.4 ([15], [10]). For each uncountable regular cardinal κ we have that κ is the union of as many as 
κ disjoint stationary sets.

Corollary 2.5. For each uncountable regular cardinal κ and each λ ≤ κ we have that κ is the union of λ
disjoint stationary sets.

The following two results are consequences of this last corollary; their proofs follow the scheme of the 
proof of Proposition 1.14.

Proposition 2.6. For every uncountable regular cardinal κ there exists a countable C-independent family.

Proof. By Corollary 2.5 there is a countable collection {Xs : s ∈ 2<ω} of disjoint stationary subsets whose 
union is κ, say indexed by the set 2<ω.

Now, for every n ∈ ω, let In ⊆ κ be defined as follows:

In =
⋃

{Xs : s ∈ 2<ω ∧ n ∈ dom(s) ∧ s(n) = 0}.

It turns out that I = {In : n ∈ ω} is a C-independent family, since every finite Boolean combination of 
I contains some combination of the form

⋂
{Is(n)

n : n ∈ dom(s)}

for some s ∈ 2<ω and also:

Xs ⊆
⋂

{Is(n)
n : n ∈ dom(s)},

which proves that every finite Boolean combination of I contains a stationary set, therefore is stationary. �
Corollary 2.7. For any cardinal κ ≥ ω1 it exists a C-independent maximal family on κ that is not strongly 
C-independent.

Proof. Let {Xm : m ∈ ω} be a partition of κ into stationary sets. Now for every n ∈ ω let Yn =
⋃
{Xm :

m ∈ Cn}, where the Cn are as in the Example 1.4. Consider I = {Yn : n ∈ ω}; then it is easy that I is 
C-independent but for h; ω → 2 such that h−1[{0}] is infinite we have that Ih = ∅, which proves that I is 
not strongly C-independent. Extending I to a maximal C-independent family the result is obtained.5 �
Theorem 2.8. The following statements are equivalent for a cardinal κ:

(1) 2κ = κ+.

5 As mentioned earlier, this can be accomplished by applying Zorn’s Lemma.
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(2) There exists a strongly independent family on κ+ of size κ.
(3) There exists a strongly C-independent family on κ+ of size at least κ.

Proof. We only prove (1)⇒(3). Let {Xf : f ∈ 2κ} be a partition of κ+ into stationary sets and for every 
α ∈ κ let Iα be defined by

Iα =
⋃

{Xf : f ∈ 2ω ∧ (f(α) = 0)} .

Let I = {Iα : α ∈ κ}. It is clear that if f ; κ → 2 then If ⊇ Xh for some h ∈ 2κ and, as Xh is stationary, 
If is stationary too, which proves that I is strongly C-independent. �

We now know that there are countable C-independent families on ω1. Are there uncountable C-
independent families on ω1? Furthermore, are there C-independent families of cardinality 2ω1? This is 
answered positively in the following.

Theorem 2.9. Let κ and λ be cardinals such that ω ≤ λ ≤ 2κ and κ is regular. Then, on κ, there is a 
C-independent family of cardinality λ.

Proof. Let {Xβ : β ∈ κ} be a partition of κ into stationary sets. Now let I = {Iα : α ∈ λ} be an independent 
family of cardinality λ on κ. For every α ∈ λ, let Îα ⊆ κ be defined as follows:

Îα =
⋃

{Xβ : β ∈ Iα}.

Now let Î = {Îα : α ∈ λ}. Clearly Î has size λ, then the only thing left to prove is that it is a C-independent 
family. Let s; λ → 2 be finite, we want to see that Îs is stationary. Since I is independent there is β ∈ Is, 
but this means that if s(α) = 0 then Xβ ⊆ Îα and if s(α) = 1 then Xβ ∩ Îα = ∅, that is, Xβ ⊆ Îs, and since 
Xβ is stationary Îs is also stationary. �

As in the classical case of independent families, one would expect that the countable Cω1-independent 
families are not maximal; however, it seems complicated to establish that. Our ideas about generalizing the 
classical proof, doing a disjoint refinement of the envelope or using a ♦	-sequence have failed. The following 
is a modification of the main construction from [7].

Theorem 2.10. If V = L, then every countable Cω1-independent family can not be maximal.

Proof. Let I be a countable C-independent family, and let {En : n ∈ ω} be an enumeration of its ω-envelope. 
For each limit ordinal γ < ω1 set

Aγ = {α < ω1 : L(α) |= ZF− ∧ γ = ω
L(α)
1 }.

Since {� < ω1 : L(�) ≺ L(ω1)} is unbounded in ω1, it follows that Aγ is at most countable for each limit 
γ < ω1. It is also known that {γ < ω1 : Aγ �= ∅} contains a club. Let

Gγ = {C ⊆ γ : C is club in γ ∧ (∃α ∈ Aγ)(C ∈ L(α))}.

Then Gγ is countable and since ZF− suffices to prove that the intersection of a finite collection of club 
subsets is a club subset, it follows that Gγ is closed under finite intersections.

Consider as well

Sγ = {S ⊆ γ : (∃α ∈ Aγ)(S ∈ L(α)) ∧ (∀C ∈ Gγ)(C ∩ S �= ∅)}.
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Once again Sγ is countable; fix an enumeration {Sn : n ∈ ω} of Sγ in which each element appears infinitely 
often and some simple enumeration {Cn : n ∈ ω} of Gγ . Now consider a cofinal sequence 〈αn : n ∈ ω〉 in Aγ

such that

Sn ∈ L(αn) ∧ (∀m ≤ n)(Cm ∈ L(αn)).

Since L(α0) |= “S0 is stationary in γ” pick

ξ0 ∈ S0 ∩ C0 and η0 ∈ S0 ∩ C0 \ (ξ0 + 1),

and recursively

ξn+1 ∈ (Sn+1 ∩
⋂

k≤n+1

Ck) \ (ηn + 1) and ηn+1 ∈ (Sn+1 ∩
⋂
k≤n

Ck) \ (ξn+1 + 1),

for all n ∈ ω. This way we have built two disjoint subsets Gγ = {ξn : n ∈ ω} and Hγ = {ηn : n ∈ ω}.
Put G =

⋃
{Gγ : γ ∈ Lim(ω1)} and H =

⋃
{Hγ : γ ∈ Lim(ω1)}.

Claim: (∀k ∈ ω)(Ek ∩G is stationary).

Fix a club subset C ⊆ ω1. Define recursively a sequence of elementary submodels Mν ≺ L(ω2) for ν < ω2
as follows:

• M0 is the smallest M ≺ L(ω2) such that {En : n ∈ ω}, C ∈ M ,
• Mν+1 is the smallest M ≺ L(ω2) such that Mν ∪ {Mν} ⊆ M ,
• Mξ =

⋃
ν<ξ Mν whenever ξ is a limit ordinal.

By the Condensation Lemma, Mν ∩L(ω1) is transitive, set αν = Mν ∩ω1. Then 〈αν : ν < ω1〉 is a normal 
sequence in ω1. Use Mostowski’s Collapse πν : Mν

∼= L(βν) to get

• πν � L(αν) = id � L(αν),
• πν(ω1) = αν ,
• πν(C) = C ∩ αν ,
• (∀n ∈ ω)(πν(En) = En ∩ αν).

Consider the set K of limit points of 〈αν : ν < ω1〉. Obviously K is a club in ω1, if γ ∈ K, then

γ = sup
ν<ζ

αν = sup
ν<ζ

βν ,

for some ordinal ζ < ω1, and hence γ = αζ . To see this, it is enough to show αν < βν < αν+1. Clearly 
αν < βν . Since βν is definable from Mν as L(βν) is the transitive collapse of Mν and that definition 
relativizes to L(ω2). Thus βν ∈ Mν+1 as Mν ∈ Mν+1 ≺ L(ω2). Henceforth βν ∈ αν+1.

Note that βζ ∈ Aγ since L(βζ) |= γ = ω1 and L(βζ) |= ZF−. Thus C ∩ γ = πζ(C) ∈ L(βζ) and of course 
L(βζ) models that πζ(C) is a club in γ. This implies C ∩ γ ∈ Gγ . It is also true that Ek ∩ γ ∈ L(βζ), then 
Ek ∩ γ = Sn ∈ Sγ , for infinitely many n ∈ ω. Since Gγ \ (C ∩ γ) is finite and Gγ is built in such a way that 
Gγ ∩ (Ek ∩ γ) is infinite, this shows that Ek ∩G is stationary in ω1.

Analogously Ek ∩H is stationary in ω1 for all k ∈ ω. It follows that I ∪ {A} is also C-independent. �
Observe, in the last proof, that it is easily possible that G ∩H �= ∅; however, it is not hard to show that 

G \H and H \G are stationary as well.
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Maximal C-independent families have many properties analogous to those of maximal independent ones 
in the classical case. For example, it is easy to prove that if I is C-independent and finite then it is not 
maximal. Indeed, let us say that I = {Ii : i ∈ n} for some n ∈ ω and note that for each s : n → 2, the 
set Is =

⋂
i∈n I

s(i) is stationary; furthermore, if s, t : n → 2 are different, Is and It are disjoint. For each 
s : n → 2 let As and Bs be a partition of Is into two disjoint stationary sets and let A =

⋃
{As : s ∈ 2n}. 

It is clear that A �∈ I and I ∪ {A} is C-independent.
Note that, since we can always split a stationary set into two stationary subsets, the above guarantees 

that we can recursively construct C-independent families of cardinality n ∈ ω and thus obtain a countable 
C-independent family. The advantage of this method is that it only requires the fact that a stationary set 
can be split into two stationary sets and not into infinite ones.

It must be clear that our method from the last paragraph is too far from working in the infinite case. 
Although V = L is a reasonable hypothesis, we conjecture that the assertion in our last theorem may 
be establish without further hypothesis beyond the usual. A model where there is a countable maximal 
Cω1-independent would be a very interesting one.

Question 2.11. Is it true in ZFC that every countable Cω1-independent family is not maximal?

In analogy to the classical case, we may introduce iCω1
as the minimum size of a maximal Cω1 -independent 

family. So with this terminology the former question becomes: Is it true in ZFC that iCω1
≥ ω1?

2.1.1. Dense C-independent families
All the properties shown next for C-independent families were proved for the classic independence by 

Goldstern and Shelah in [5], this proves that C-independent families on ω1 behave similarly as the ω-
independent ones.

Definition 2.12. If I is a C-independent family then we define the ideal associated to I as:

JI = {A ⊆ ω1 : (∀f ∈ FF<ω(I))(∃g ∈ FF<ω(I))(g ⊇ f ∧ Ig ∩A is not stationary)}.

Clearly JI is an ideal that contains the ideal of the non-stationary sets.

Definition 2.13.

(1) If X, Y ⊆ ω1, we say that X is NS-almost contained in Y if X \Y is not a stationary set and we denote 
this by X ⊆ns Y .

(2) For a family X of subsets of ω1 and Y ⊆ ω1, we say that Y is NS-pseudointersection of X if Y ⊆ns X

for every X ∈ X .

In this definition we focus in the ideal of non-stationary sets in ω1; however, it is straightforward defining 
the relation X ⊆J Y , for any other ideal J.

Definition 2.14. A C-independent maximal family is dense if for every A ∈ JI
+ it exists g ∈ FF<ω(I) such 

that Ig ⊆ns A.

This can be interpreted as follows: a C-independent family is dense if the envelope of I is a base of JI+; 
let us also note that for all f ∈ FF<ω(I) we have that If ∈ JI

+, since f itself is a witness of this.
Next we use the following standard notation, if A ⊆ P(X) and Y ⊆ X, then A � Y is the family 

{A ∩ Y : A ∈ A}.
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Proposition 2.15. If I is a maximal C-independent family, there exists f ∈ FF<ω(I) such that for every 
g ∈ FF<ω(I) with g ⊇ f , I � Ig is maximal.

Proof. Let {fn : n ∈ ω} be a maximal family with the following properties:

(1) If n �= m, fn and fm are incompatible.
(2) I � Ifn is not maximal for every n ∈ ω.

Note that by condition (1) and since FF<ω(I) is ccc, this collection is at most countable (in principle it 
could be finite but assume without loss of generality that it is countable).

Now, for every n ∈ ω let An ⊆ Ifn be such that I � Ifn ∪ {An} is C-independent on Ifn and let 
A =

⋃
n∈ω An. Since I is maximal it exists f ∈ FF<ω(I) such that If ∩ A or If \ A is not stationary. Let 

us suppose without loss of generality that If ∩ A is not stationary. We claim that f is incompatible with 
every fn; to see this, suppose that f and fn are compatible, i.e., suppose that f ∪ fn is a function. Thus 
If∪fn ∈ ENV<ω(I � Ifn), in particular we have that:

If ∩A ⊇ If∪fn ∩A ⊇ If∪fn ∩An,

but this is impossible, since in that case If∪fn ∩An is stationary as If ∩A is not.
Since f is incompatible with every fn then so is every g ∈ FF<ω(I) such that g ⊆ f , therefore I � Ig is 

maximal, otherwise the maximality of {fn : n ∈ ω} would be contradicted. �
Lemma 2.16. If I is a C-independent maximal family such that for every f ∈ FF<ω(I) the family I � If is 
maximal, then I is dense.

Proof. Let A ∈ JI
+, this means that there exists f ∈ FF<ω(I) such that for every g ∈ FF<ω(I) that 

extends to f we have that Ig ∩ A is stationary. As I � If is maximal, it exists g ∈ FF<ω(I), g ⊇ f such 
that either Ig ∩A or Ig \A is not stationary, but we know that Ig ∩A is stationary, then necessarily Ig \A
is not, i.e., Ig ⊆ns A, which is what we wanted. �
Proposition 2.17. If I is a maximal C-independent family which is dense, then P(ω1)/JI is ccc.

Proof. By contradiction. Suppose that {Xα : α ∈ ω1} ⊆ JI
+ is such that if α �= β then Xα ∩ Xβ ∈ JI . 

Since I is a dense family, for every α ∈ ω1 it exists fα ∈ FF<ω(I) such that Ifα ⊆ns Xα. Now if α �= β

then fα and fβ are incompatible, otherwise Ifα∪fβ = Ifα ∩ Ifβ ⊆ns Xα ∩Xβ ∈ JI . But now Ifα∪fβ ∈ JI
(as JI contains the non-stationary sets), and this is a contradiction as ENV<ω(I) ⊆ JI

+.
Thus the family {fα : α ∈ ω1} is an antichain in FF<ω(I), but this contradicts the fact that FF<ω(I) is 

ccc. �
Proposition 2.17 appears in [5] for the case of classical independent families. There it is employed as 

a small part in the proof of the consistency of s = d = r = ℵ1 < ℵ2 = u = i = c. This raises a natural 
question: can that entire proof, or certain parts of it, be naturally adapted for the invariants that correspond 
to subfamilies of P(ω1) taking modulo non-stationary? In particular, if we let rCω1

:= min{|R| | R ⊆
P(ω1)(R is Cω1-reaping)} where a family R ⊆ P(ω1) is considered Cω1-reaping if for all stationary X ⊆ ω1
there is R ∈ R such that R ⊆NS X or R ∩X =NS ∅, then it is easy to see that rCω1

≤ iCω1
. This way it is 

very natural to ask:

Question 2.18. It is consistent that rCω
= ℵ2 < ℵ3 = iCω

= 2ω1?

1 1



F. Hernández-Hernández, C. López-Callejas / Annals of Pure and Applied Logic 175 (2024) 103440 15
2.1.2. Strongly C-independent families

Lemma 2.19. Let E = {En : n ∈ ω} be a nested collection of stationary sets, i.e., En+1 ⊆ En for all n ∈ ω. 
The following conditions are equivalent:

(1) E admits a stationary NS-pseudointersection, that is, there is a stationary set X such that, X \ En is 
not stationary, for all n ∈ ω.

(2)
⋂
n∈ω

En is stationary.

Proof. (1) ⇒ (2) Note that

X = (X ∩
⋂
n∈ω

En) ∪ (X ∩ (ω1 \
⋂
n∈ω

En))

and one of the two sets forming the union must be stationary. On the other hand:

X ∩ (ω1 \
⋂
n∈ω

En) = X ∩ (
⋃
n∈ω

ω1 \ En) =
⋃
n∈ω

X ∩ (ω1 \ En) =
⋃
n∈ω

X \ En,

and as every X \En is not stationary, then neither is 
⋃

n∈ω X \En, i.e., X∩(ω1 \
⋂

n∈ω En) is not stationary. 
Necessarily X ∩

⋂
n∈ω En is stationary and consequently 

⋂
n∈ω En also is stationary.

(2) ⇒ (1) In this case it is enough to take X =
⋂

n∈ω En. �
Corollary 2.20. Let I ⊆ P(ω1) be a C-independent family. The following conditions are equivalent:

(1) I is strongly C-independent.
(2) For every f ; I → 2 with f countable, the collection {If�n : n ∈ ω} admits a stationary NS-

pseudointersection.6

Proposition 2.21. Let I a countable strongly C-independent family. Then there is J ⊆ P(ω1) such that 
I � J and J is strongly C-independent, i.e., I is not a maximal strongly C-independent family.

Proof. Let I = {In : n ∈ ω} be a strongly C-independent family. For each f ∈ 2ω consider Xf = If . If 
f �= g then Xf ∩Xg = ∅. Now let {Af , Bf} be a partition of Xf into stationary sets and define A by:

A =
⋃

f∈2ω

Af .

Let us see that J =: I ∪ {A} is strongly C-independent. For this it is enough to see that for all f ∈ 2ω, the 
sets Xf ∩A and Xf \A are both stationary, however Xf ∩A = Af and Xf \A = Bf are stationary sets. �

Note that, as every strongly C-independent family is C-independent, the family J constructed in the 
previous proof is C-independent, then, we get the following.

Corollary 2.22. Let I a countable strongly C-independent family (in particular I is C-independent). Then 
there is J ⊆ P(ω1) such that I � J and J is C-independent.

6 For f � n to make sense, it is enough to enumerate the domain of f and so f can be interpreted as a function in 2ω .
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Note that Corollary 2.22 is a partial answer to Question 2.11, since it implies that if I is a countable 
maximal C-independent family, then I cannot be strongly C-independent.

As we have seen, under CH there are countable C-independent families that are strongly C-independent, 
on the other hand (without extra hypothesis further than ZFC) there are also countable C-independent 
families that are very far from being strong. This means that there exists I = {In : n ∈ ω} ⊆ P(ω1) which 
is C-independent but that for every h ∈ 2ω such that |h−1({0})| = ω we have that Ih = ∅; for example, to 
construct one of these families it is enough to take {Xn : n ∈ ω} a partition of ω1 into stationary sets and 
define In as:

In =
⋃

m∈Cn

Xm,

where the Cn are as in Example 1.4, in this way, the family {In : n ∈ ω} fulfills this property.

3. Saturated ideals and J-independent families

Saturation of ideals has been closely related to the study of large cardinals, therefore it constitutes, as 
we will see in this section, a bridge between these cardinals and the existence of J-independent families on 
them.

Definition 3.1. Let J be an ideal on a cardinal κ. Then:

(1) J is λ-saturated if for every collection {Xα : α ∈ λ} ⊆ J+ there exist β < γ < λ such that Xβ∩Xγ ∈ J+.
(2) sat(J) is the smallest λ such that J is λ-saturated.

Lemma 3.2. Let J be an ideal on a cardinal κ such that sat(J) > λ for some cardinal λ. Then there exists a 
J-independent family on κ of cardinality 2λ.

Proof. Since J is not λ-saturated, it exists a collection {Xβ : β ∈ λ} ⊆ J+ such that Xβ ∩Xγ ∈ J, if β �= γ. 
Let I = {Iα : α ∈ 2λ} be a λ-independent family of cardinality 2λ.7 For each α ∈ 2λ, let Îα ⊆ κ be defined 
as follows:

Îα =
⋃

{Xβ : β ∈ Iα}.

Now set Î = {Îα : α ∈ κ}. Clearly Î has cardinality 2λ, then the only thing left to prove is that it is an 
J-independent family.

Fix s; 2λ → 2, with |s| < ω. We want to see that Îs ∈ J+. As I is independent, Is �= ∅ and moreover 
β ∈ Is implies that Xβ ⊆ Îα for all α such that s(α) = 0 and Xβ ∩ Îα ∈ J for all α such that s(α) = 1, i.e., 
Xβ ⊆J Îs and, since Xβ ∈ J+, it follows that Îs ∈ J+. �

Next we will point out some relationships between the non-existence of strongly J-independent families 
and the existence of large cardinals.

Definition 3.3. If J is an ideal on κ, we say that J is κ-complete if 
⋃

H ∈ J, for every subfamily H ⊆ J such 
that |H| < κ.

7 Such a family exists in ZFC, i.e., it is not necessary to assume any large cardinal hypotheses about λ. This can be consulted in 
[4] (Theorem 4.2).
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Theorem 3.4. [10] Suppose that J is a κ-complete ideal on κ.

(1) (Tarski [16]) If J is λ-saturated with 2<λ < κ, then κ is measurable.
(2) (Levy-Silver [10]) If J is κ-saturated and κ is weakly compact, then κ es measurable.
(3) (Kurepa [12]) If J is λ-saturated with λ < κ, then κ has the tree property.

Corollary 3.5. Suppose that J is a κ-complete ideal on κ.

(1) If λ < κ, 2<λ < κ and it does not exists a J-independent family of cardinality 2λ, then κ es measurable.
(2) If there is no J-independent family of cardinality 2κ and κ es weakly compact, then κ es measurable.
(3) If λ < κ and there is no J-independent family of cardinality 2λ, then κ has the tree property.

Proof. We will only prove the first part, the other two parts are analogous.
Since there is no J-independent family of cardinality 2λ, then, by Lemma 3.2, we have that sat(J) ≤ λ, 

i.e., J is λ-saturated, then by the first part of Theorem 3.4 we have the desired result. �
Saturation of the ideal J is related to the existence of strongly J-independent families.

Proposition 3.6. Let J be an ideal on κ and suppose that there exists a strongly J-independent family of 
cardinality κ. Then sat(J) ≥ κ. Furthermore, if κ is regular then κ is strongly inaccessible.

Proof. Let I be a strongly J-independent family of cardinality κ, λ < κ and Iλ ⊆ I such that |Iλ| = λ. 
Then for every h : λ → 2, we have that Ih

λ ∈ J+ and if h �= g then Ih
λ ∩ Iλg = ∅, which proves that 

sat(J) > 2λ > λ, and it finishes the proof. �
The method in the previous proof has the advantage that it illustrates the fact that κ is a strong limit 

cardinal, however the existence of a strongly J-independent family of cardinality κ says even more about 
the saturation of J: If J is an ideal on κ and there is a strongly J-independent family I with cardinality κ, 
then sat(J) > κ. Indeed, suppose that I = {Xα : α ∈ κ} and for every β ∈ κ let Yβ = Xβ \

⋃
α∈β Xα. Note 

that, since I is strongly J-independent, Yβ ∈ J+, and if β < γ < κ then Yβ ∩ Yγ = ∅. This proves that J is 
not κ-saturated (since {Yβ : β ∈ κ} is a witness of that).
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