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QR-SETS AND NORMALITY OF ¥-SPACES

FERNANDO HERNANDEZ-HERNANDEZ AND MICHAEL HRUSAK

ABSTRACT. We tie up some loose ends in the relationship
between the normality of W-spaces and the existence of Q-
sets.

1. INTRODUCTION

The starting point for our considerations is the following classical
theorem giving a definitive solution to the separable case of the
Normal Moore Space Problem.

Theorem 1.1 ([9]). The following are equivalent:
(a) There is a Q-set.
(b) There is an uncountable normal ¥-space.
(c) There is a separable normal non-metrizable Moore space.

For the sake of completeness, we include a sketch of the proof
of the theorem later in the text. We would like to mention that
the implication (a) = (c) was originally proven by R. H. Bing in
[1] when he showed that the bubble space over a (-set is a normal
space. On the other hand, R. W. Heath proved the implication (c)
= (a) in [5].

An almost disjoint family A is a family of infinite subsets of w
(or any other countable set) such that A N B is finite for distinct
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A, B € A. The V-space ¥ (A) associated with A is wU.A where the
points of w are isolated and the basic neighborhoods of A € A are
of the form {A}U A\ F, where F' C w is finite. The space ¥ (A) is
a first countable, separable, locally compact Moore space.

An almost disjoint family A is said to be R-embeddable if there
exists a continuous f : U (A) — R such that f is an injective
function and f (A) is an irrational number, while f (n) is a rational
one for all A € A and all n € w. For an R-embeddable family A,
we keep the notation X4 = {z4: A € A}, where f (4) = x4 and
f is a witness that A is R-embedded.

In a conversation with members of the Toronto Set Theory sem-
inar, the following question was raised:

Question 1. If A is an uncountable R-embeddable family, is ¥ (\A)
normal if and only if X 4 is a Q-set?

There seemed to be some confusion between the question and an
analogous question for subfamilies of the Cantor tree (see Proposi-
tion 2.2). We will show that, consistently, neither of the implica-
tions is true. We first show that in a model of W. G. Fleissner and
A. W. Miller, there is an R-embeddable family A with ¥ (A) nor-
mal, but X 4 is not a @-set [4]. Then we modify their method to
show that there is a model of ZFC where there is an R-embeddable
family A for which X 4 is a @-set, yet ¥ (A) is not normal.

2. PRELIMINARIES

Our terminology is mostly standard: A C* B means that A is
almost contained in Bj; that is, A \ B is finite, A =* B means
A C" Band B C* A. For functions f,g € w¥, we write f <* g
to mean that there is some m € w such that f(n) < g(n) for all
n > m. The bounding number in w*, b, is the least cardinal of
an <*-unbounded family of functions. The dominating number in
w®, 0, is the least cardinal of a <*-cofinal family of functions. A
@-set is an uncountable set X of reals such that every subset of
X is F, in X. A )-set is an uncountable set X of reals such that
every countable subset of X is G5 in X. ZFC suffices to construct
a A-set of size b. We say that a subset A of R is concentrated on
aset C CRif A\ U is countable for every open set U containing
C. The set 2“ is equipped with the product topology, that is the
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topology with basic open sets of the form [s] = {z € 2¥ : s C z},
where s € 2<“. The topology of P (w) is that obtained via the
identification of each subset of w with its characteristic function.
Givenaset EC2¥ let E={z |n:x € FE, n€w } C2<¥ See [3]
for undefined topological notions and [6] for set theoretical notions.

The following proposition is standard and easy to prove.

Proposition 2.1. ¥ (A) is a normal space if and only if for every
B C A there is a J C w such that

B={AcA:AC*J} and A\B={Ac A:ANJ="0}.

The set J in the conclusion of this proposition is called partitioner
for B and A\ B. Notice that if B={4A € A: AC* J}, then

B= U m {AeA:meA\n=me J};
new mew
that is, B is an F,-set of A as subspace of P (w). Therefore, if
U (A) is a normal space then A is a Q-set (as subspace of P (w)).

For z € 2, put Ay = {z [ n: n € w} and for a subset X of 2* let
Ax ={A; :x € X}. Then Ax is an almost disjoint family of sub-
sets of 2<¥. Call this Ax the almost disjoint family corresponding
to X.

Proposition 2.2 (Folklore). Let X C 2¢ and Ax be the almost
disjoint family corresponding to X. Then X is a @)-set if and only
if ¥ (Ax) is a normal space.

Proof: Assume that X is a @-set and BC A, and let B =
{r € X : A, € B}. Since X is a Q-set there are closed subsets F,
and Gy, of X such that B = J,,c, Fn and X \ B = {J,,c,, Gn- De-
fine J, = ﬁo, Ky = CA}O \ ﬁo, and J, = ﬁn \ U2<né7, as well as
K, = én \ Ui<n ﬁn for n > 0. Put J = {J,c, Jn and observe
that J N K,, =* 0 for every m € w. If A, € B, then there is
some n € w such that z € F,. Moreover, since each (; is closed
in X and G; N B = (), for ¢ < n, there is some k € w such that
[z | k] NU,.,, Gi = 0. This implies that A, C* J, € J. Sim-
ilarly, if x € X \ B there are k,m € w such that x € G,, and
[ | k] NU,<, Fi = 0; this implies A, N J =* (. By Proposition

new
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2.1 this suffices to show that ¥ (A) is normal. The other direction
follows from the comments following Proposition 2.1. O

Proof of Theorem 1.1: The equivalence between (a) and (b) fol-
lows from Proposition 2.2. For (b) implies (c¢) we need only to
recall that W (A) is always a separable Moore space which is non-
metrizable if A is uncountable. To show that (c) implies (b), first
observe that a separable normal Moore space which is not metriz-
able has an uncountable closed discrete subset. This is a conse-
quence of Bing’s theorem that a Moore space X is metrizable if
and only if X is collectionwise normal. So, let X be a separable
non-metrizable normal Moore space, let D be a countable dense
subset of X, and let F' be a closed discrete uncountable subset of
X disjoint from D. Taking sequences of elements in D which con-
verge to the points in F, we obtain an uncountable almost disjoint
family A. The normality of X implies that of ¥ (A). O

Restricting ourselves to R-embeddable almost disjoint families
does not impose any restriction due to the following simple obser-
vation.

Proposition 2.3. Every almost disjoint family .4 such that ¥ (.A)
is normal is R-embeddable.

Proof: If ¥ (A) is a normal space then we can take any injection
g: A — R\Q and use the Tietze extension theorem to find a
continuous extension g : ¥ (A) — R of g. Now g can be modified
to obtain a function f witnessing that A is R-embedded; simply let
fTA=9g] Aand, forn € w, f(n) € Q\{f(0),...,f(n—1)}
such that |f(n) —g(n)| < L . The continuity of f follows from
that of g. O

3. MAIN RESULTS

In this section we describe how to construct models of ZFC where
either of the possible implications in Question 1 fails. With a little
bit of care one can actually construct a single model where both
implications fail.

Even though the belief in a positive answer for Question 1 was
not correct, it was partially supported by the next theorem.
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Theorem 3.1 (Folklore). MA, _centered tmplies that for an R-embed-
dable almost disjoint family A, ¥ (A) is normal if and only if X 4
18 a @Q-set.

Proof: For the forward implication just recall that by Jones’
Lemma, the cardinality of A must be less than ¢ and by a result
of J. Silver (under MA,_centered) €very set of reals of size less than
¢ is a @Q-set. The reverse implication follows directly from the next
lemma. U

Lemma 3.2. Suppose that A is an R-embeddable family such that
X4 is a Q-set. If |A| < b, then U (A) is a normal space.

Proof: For convenience we shall use the bubble space to show
that ¥ (A) is normal. It is an old result of Bing’s that the bubble
space over a (Q-set is a normal space. See [10, p. 709].

Let ¢ : U (A) — R witness that A is R-embedded, let X4 =
{zra: A€ A}, and put ¢, = ¢ (n), for every n € w. By hypothesis
X4 is a @Q-set. In order to establish that ¥ (A) is normal, let
B C A. As the bubble space over X 4 is normal, there are basic
neighborhoods B,, for z € X 4, such that Ug = |J{B,, : B € B}
and Wp = J{Bz, : A € A\ B} are disjoint.

It is clear that, for A € A, there is a function f4 : A — w
satisfying

(1) fa is non-decreasing,

(2) fa is finite-to-one, and

(3) eventually <qn, f%(n)> € B,,.
The idea is that the function f4 can be used to lift the points in A
to the neighborhood B, ,. Define g4 : w — w by

ga(n) =max{a € A: fa(a) <n}.

Since |A| < b, there is an increasing function g : w — w such that
ga <*gforall Ae A Let f:w — w be defined by

f(n)=max{k€w:g(k) <n}

for every n € w. Then f [ A <* fa for every A € A and f is finite
to one. This f can be used to do the lifting of the points ¢, in a
uniform way for every A € A; i.e., for large n € A, <qn, ﬁ €
B, , for every A € A.
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Then the partitioner for B and A\ B will be

J:{new:<qn,f(1n)>€UB}.

It is clear that BE B=BC*Jand Ac A\B=ANnJ=*0. O

Now we show that there is a model in which the implication “if
U (A) is an uncountable normal space then X 4 is @-set in R” fails.

Theorem 3.3. It is consistent that there is an uncountable A
which is R-embeddable and ¥ (A) is normal but X 4 is not a Q-set.

Proof: In [4], a model is described where there is a @-set X which
consists of the irrationals concentrated on some countable set F
of the irrationals disjoint from X. Partition Q into two disjoint
dense sets Dy and D;. By propositions 2.2 and 2.3, there is an
R-embedded almost disjoint family Ag of subsets of Dy such that
X4, = X. Consider also the almost disjoint family .A; obtained by
taking convergent sequences of elements in D to the elements of
F. Since F' is countable, ¥ (A;) is normal. Letting A = Ay U A,
U (A) is normal as it is the topological sum of ¥ (Ag) and ¥ (A;),
both of which are normal. However, as X is concentrated on F,
X4 = X UF cannot be a Q-set.! O

Theorem 3.4. It is consistent that there is an almost disjoint fam-
ily A that is R-embeddable, X 4 is a Q-set, yet W (A) is not a normal
space.

Proof: We will use a finite support iteration <IF’a, Qu:a< w2>

of c.c.c. forcings that will be described next. The idea is that
Py generically adds an R-embeddable family A and the rest of the
iteration makes X 4 a @Q-set without making W (.A) a normal space.

For technical reasons, fix families W,,, n € w, of open intervals
with irrational endpoints such that

e the length of each interval in W, is at most %, and
o W, 1 refines W,.

From the referee’s report: “The example of a normal R-embedded ¥(.A)
such that X 4 is not a @-set is a little unsatisfying, in that it is homeomorphic
to the topological sum of two W(A)’s, each over a Q-set (one countable). I
wonder if every example must be like that. Surely there would at least have to
be an uncountable subset of X 4 which is a Q-set.”
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Then W = U, e, Wh is a base for the rationals with the property
that, given two elements of W, either one is contained in the other
or they are disjoint. In particular, for every ¢ € Q and n € w there
is a unique W = W (¢,n) € W, such that ¢ € W.

Define Py by p € Py if and only if p = (a,k) € Fn (w1 X w, Q) xw.
For p = (ap, kp) and ¢ = (aq, k) declare p < ¢ if and only if

(1) ap 2 a4 and k, > k4, and
(2) if a4 (e, -) and ayp, (o, -) are the obvious functions and n
the largest element in the domain of a4 (v, =) then

ap (a,n) € W (aq(a no‘),kq)

g
for all n € dom (ay (e, -)) \ dom (aq (or,-)). Moreover, this
holds for all @ € wy such that there is some n € w for which
(a,n) € dom (a,).?

If Gg is a generic filter in Py, then G codes a family of sequences
aq : w — Q given by aq (n) = ap (o, n) for some p € Gy. Thus, Py
actually adds w; Cohen reals—the limits of the Cauchy sequences
(aq (n) :m € w). It is clear that letting A, = {aq (n) : 1 € w}, we
have an R-embedded almost disjoint family A = {4, :a < w;} in
V' [Go).

Let B = {B,,:n €w} be a base for the topology of R. For
Y C X4, let P(Y) be the set of all » such that

(1) r is finite subset of w x (BUY);
(2) for B € B and = € Y, the set r satisfies (n, B) € r, and
(n,z) € r implies = ¢ B.
The ordering on P (Y) is just » < 7/ if and only if » D »/. This
forcing is defined in [4].
The forcing P (Y') makes Y an F,, subset of X 4. Indeed, if G is
a generic filter in P (Y) over a model V', then set for each n € w,

U,={x€X:(FreG)(3BeB)((n,B)er N z€B)},

and set K = J{X \ U, : n € w}. Then each U, is open relative to
X4 and K is an F), relative to X 4. To see that K =Y, proceed
as follows. For all zx € Y and r € P(Y)), there are 7’/ D r and n € w
such that (n,z) € 7. Then z € X \ U,, C K. On the other hand, if
ze X \Y, reP(Y) and n € w, there are v’ DO r and B € B such
that (n, B) € v’ and x € B. Then z € U, for all n € w.

«

qls

2The point of choosing the families W, is to make the order of Py transitive.
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Assume the ground model V' is a model of CH. Using the usual
bookkeeping techniques, we can take Qq, to be such that Py IF Q4 =
]P’(Ya) where Y, is a Po-name for a subset of X 4 and doing this in
such a way that every subset of X 4 eventually appears as some Yy,.
Thus, P,,, will force A to be an R-embedded almost disjoint family
and X4 to be a @Q-set. Fix a generic G C P, over the ground
model V.

To show that ¥ (A) is not normal in V [G], it suffices to find a
C C A such that C and A \ C cannot be separated. Consider simply
C ={A,:a € w; is a limit ordinal}. Suppose J C Q is such that

C={AcA:AC*J} and A\C={AcA:ANJ="0}.

By genericity, J is a dense and co-dense subset of the rationals.
The conclusion will then follow from the next lemma. O

Lemma 3.5. InV [G], the set {a € w1 : Ay " J} is at most count-
able for every dense and co-dense J C Q.

To prove the lemma we first show that P,,, is “semi-Cohen” (see
[2])-

Lemma 3.6. Ifp € P, and M is a countable elementary submodel
of some big enough H (6) such that P,, € M, then there is a P €
P,, N M such that whenever v € P, N M is such that r <P, r is
compatible with p.

Proof: For every p € P, there is some 3 < wy such that p € Pg;
thus, the proof can be done by induction on 8 < wy. For g = 0
and for § limit, the proof is easy so we only show the details for
successor steps.

Suppose the lemma holds for Pg and p € Pg;. Thereis a p’ € Pg
such that

P IEp(B) = {(ni, Bi) 1 i <mno}U{(ng,iy,) i <na},

for some ng, n1,ny € w with ny < ng, and such that {v; : i <n1} C
Mwhile{yi:n1§i<n2}ﬂM:®. B

By induction hypothesis there exists a p’ € P3N M satisfying the
conclusion for p’ instead of p. Find {7} : n1 <i < ny} C M disjoint
from {7; : i < n2} and define p € M as follows:

p(0) =o' (0)U{((vism, qz) s m) = (i m. ) ) € p (0) Ai < mal;

p(a) =p (a) for 0 < a < 3; and
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B(8) = ()N M) U{(miiy) i € ma}.

Then p satisfies the requirements. Indeed, if » € Pgy; N M and
r < p, then r [ 8 is compatible with p [ §; thus, p and r can only
be incompatible if r forces ., inside some B used in p (3), for some
i € ny. However, r (and p) can only decide a finite initial part of A%
of which @, is the limit. Then there must exist ¢, € Q and k € w
such that the interval W (g, k) is contained in B, r IF ¢, € A%,
and any mutual extension of p and r forces the new points of A
to be in W (g, k). Since the same initial part of A that p uses
is also used by p to determine another point s r would also

force gy, inside A / and promise that the new points for A ; are in
W (gm, k). In other words, r would force &.,r inside B as Well This
is a contradiction as p I- &,/ ¢ B. O

Now we are ready to give the proof of the main lemma.

Proof of Lemma 8.5: Fix J C QQ as in the statement of the lemma
and let J be a P,,-name for .J. Let M < H () be countable, with
0 being a large enough regular cardinal, JeM,and M containing
everything that is relevant for the proof of the lemma. We now
show that P, I+ As Z* J for 6 ¢ M.

Suppose not. Then there is some 6 ¢ M and there is p € P,,, such
that, for some n € w, plI- As\ J C {qo,...,qn}. Let p€ M NP,
be as in the conclusion of Lemma 3.6. Since 7 I- “Q )\ J is dense in
R”, p can be extended inside M to some r € P,, N M such that,
for some k € w and large enough m € w,

o rlkq, ¢ J;

e g is a fresh new rational, i.e., ¢x ¢ {qo,-..,qn}, and g is
not in the range of p (0) (6, -); and

o g, € W (gn,m).

Then r is compatible with p, so we can find a common extension
' such that ' I g, € As which contradicts that p IF g ¢ As. O

We conclude with some remarks on Problem 291 in [8] which has
already been implicitly solved. First, let us recall that a space is
pseudonormal if every pair of disjoint closed sets can be separated
by disjoint open sets, provided at least one of them is countable.
Peter Nyikos asks, Is there a pseudonormal V-space of cardinality
07 This is equivalent to asking whether there is a A-set of size 0.
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For if ¥ (A) is a pseudonormal space, then A is a A-set as subspace
of P(w), and if X C 2¥ is a A-set, then ¥ (Ayx) is a pseudonormal
space (the proof of this is analogous to the proof of Proposition
2.2). Miller [7, Theorem 22| showed that in the Cohen model (in
which b = X; and 9 = Ny), any A-set has size N;.

Problem 291 also has a second part where Nyikos asks, More
generally, what is the mazimum cardinality of a pseudonormal V-
space? To this we have two comments.

First, it is not true that the maximum can always be attained.
The maximum exists in the absence of inaccessible cardinals; how-
ever, assuming the existence of a strongly inaccessible cardinal, it
is possible to construct a model of ZFC where ¢ is a limit cardinal,
and for every x < ¢ there is a A-set of size k, yet there is no A-set
of size ¢. The proof of this will appear elsewhere.

The other comment is that there does not seem to be any rea-
sonable combinatorial upper bound. This is largely due to the fact
that A-sets are preserved by c.c.c. forcing extensions. For example,
it is consistent that there is a A-set of size ¢ = Ny, yet all cardinal
invariants in the Cichon diagram are equal to N;.
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