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Dedicated to István Juhász
on the occasion of his 80th birthday

Abstract

We introduce a topology on ideals stronger than the usual metric topology as

a means for coarse classification of ideals. We study its properties and relation

to the combinatorial properties of the ideals. This topology generalizes the

submeasure topology on analytic P -ideals introduced by S. Solecki. We give a

partial answer to a conjecture of A. Louveau and B. Veličković.
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Introduction1

There is an extensive study of combinatorial properties of ideals (see e.g.2

[7], [9], [10], [17], [18], [19], [23], [24], [25] [26], [29]). Here we propose to use3
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methods of general topology to study the combinatorics of (mostly definable)1

ideals. We introduce the bounded topology (Definition 1.3) on ideals on ω which2

is finer than the one inherited by the metric space 2ω. One of the main features3

of this topology is that combinatorial notions become topological, e.g. being4

strongly unbounded is equal to being closed and discrete.5

We show that the bounded topology is distinct from the usual metric topo-6

logy unless the ideal in question is a non-meager P -ideal (Theorem 2.6), and7

that it coincides for analytic P -ideals with the submeasure topology introduced8

by S. Solecki in [23] and [24] (Theorem 3.3). In Section 2 we study general9

properties of the bounded topology, combinatorial notions which have their10

topological counterparts in the bounded topology and topological properties11

which characterize certain known classes of ideals. Along the way, we identify12

some topological groups associated with the bounded topology (Theorem 5.4).13

This work was largely motivated by a conjecture by A. Louveau and B.14

Veličković in [19] (Conjecture 4.4), asking whether all ideals which are not the15

union of countably many weakly bounded sets are Tukey reducible to ωω. We16

discuss the conjecture in Section 4 and we present a partial solution (Corol-17

lary 4.13) for ideals with a property weaker than being a P -ideal (Definition 4.518

and Proposition 3.4). We also introduce a subideal of Fin×Fin, we call the tri-19

angular ideal, which does not have this property (Proposition 4.8) and motivates20

a new conjecture (Conjecture 4.14).21

In section 5, we use the bounded topology to classify Fσ-ideals (Theo-22

rem 5.11). In Section 6 we use a result by T. Banakh and L. Zdomsky̆ı to23

explore when the bounded topology is a topological group. At the end, we24

present some related questions and conjectures.25

1. Preliminaries and terminology26

For an infinite set X, a family I ⊆ P (X) \ {X} is an ideal on X if it is27

closed under taking subsets and finite unions. For a set X, the notation [X]<ω
28

stands for {A ⊆ X : |A| < ω} and [X]ω stands for {A ⊆ X : |A| = ω}. All ideals29
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mentioned in this paper are ideals on ω (or equivalently on a countable set),1

and always contains the ideal Fin = [ω]<ω. The ideal generated by a family2

A ⊆ P (ω) is the ideal ⟨A⟩ = {I ⊆ ω : (∃F ∈ [A]<ω) I ⊆
⋃
F}. We denote by3

I+ the collection of all subsets of ω which do not belong to the ideal I. We4

can see an ideal as a subset of 2ω, via the characteristic map, hence it has the5

induced topology from the metric space 2ω, which we will denote by τ . The6

topological concepts that we mention for subsets of an ideal I (like analytic,7

open, compact, etc.) refer to the space (I, τ), all of them are standard and can8

be consulted in [5].9

For a pair of sets A,B, we use the notation AB for the set of all functions10

whose domain is B and their range is contained in A, the notation A<ω stands11

for
⋃
{An : n ∈ ω} and A≤ω stands for A<ω ∪Aω.12

For a set A ⊆ ω× ω and n ∈ ω, let (A)n = {m ∈ ω : (n,m) ∈ A}. Through-13

out the work, we will use the following particular ideals.14

◦ Fin× ∅ = {A ⊆ ω × ω : (∀∞ n ∈ ω) (A)n = ∅},15

◦ ∅ × Fin = {A ⊆ ω × ω : (∃ f ∈ ωω) (∀n ∈ ω) (A)n ⊆ f(n)},16

◦ Fin× Fin = {A ⊆ ω × ω : (∃ f ∈ ωω) (∀∞ n ∈ ω) (A)n ⊆ f(n)}.17

An ordered set (T,≤) is a tree if, for all t ∈ T , the set {s ∈ T : s ≤ t}18

is well ordered. Trees used here are mainly (2<ω,⊆) and (ω<ω,⊆). We use19

standard notation for cones, concatenations and restrictions: for t ∈ 2<ω, the20

cone determined by t is the set ⟨t⟩ = {x ∈ 2ω : t ⊆ x}, also its concatenation21

with b ∈ 2 is the map t⌢b ∈ 2<ω which extends t in such a way that dom(t⌢b) =22

dom(t) ∪ {dom(t)}, t⌢b(n) = t(n) for all n ∈ dom(t) and t⌢b(dom(t)) = b. For23

x ∈ 2ω and n ∈ ω, x↾n denotes the restriction of the function x to the set24

n = {0, 1, . . . , n − 1}, that is x↾n(k) = x(k) for all k ∈ dom(x↾n) = n, thus25

x↾n ∈ 2<ω. In particular, for A ⊆ ω the notation A↾n is the restriction of the26

characteristic map of A to n. We usually take advantage of the identification of27

the characteristic functions with the sets they represent, and we will use them28

interchangeably. Similarly, we use the same notation for ω<ω.29
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A subset X ⊆ I is bounded if
⋃
X ∈ I. A map f : I → J between a pair of1

ideals is a Tukey function if f−1[B] ⊆ I is bounded for every bounded set B ⊆ J,2

the existence of such map is denoted by I ≤T J. The following is a key notion of3

a weaker version of bounding and its dual property. These can be defined more4

generally for directed orders, but we use it only for ideals.5

Definition 1.1. Let I be an ideal.6

a) A subset W ⊆ I is weakly bounded (or a web set) if

(∀X ∈ [W]ω) (∃Y ∈ [X ]ω)
⋃

Y ∈ I.

b) A subset S ⊆ I is strongly unbounded (or a sun set) if

(∀X ∈ [S]ω)
⋃

X /∈ I.

From its definition, web sets (resp. sun sets) are preserved under almost7

subsets and finite unions. Furthermore, W ⊆ I is a web set if and only if it does8

not contains any infinite sun set. In this case its closure under subsets, i.e. the9

set W↓ = {I ∈ I : (∃W ∈ W) I ⊆ W}, is a web set too.10

Proposition 1.2. Let I be an ideal and U ⊆ I. The following are equivalent.11

i) For all W ⊆ I weakly bounded set, U ∩W is open in W.12

ii) For all K ⊆ I weakly bounded and compact, U ∩ K is open in K.13

iii) For all I ∈ I, U ∩ P (I) is open in P (I).14

Proof. It follows directly that i) implies ii) implies iii). To see the missing15

implication, let W ⊆ I be a web set and let I ∈ U ∩W. If for all n ∈ ω there16

exists In ∈ (⟨I↾n⟩ ∩W) \ U , then there is a subsequence {Inm
: m ∈ ω} that17

converges to I, which is bounded by some J ∈ I and disjoint from U . This,18

however, contradicts that U ∩ P (I ∪ J) is open in P (I ∪ J). So, there is an19

n ∈ ω such that ⟨I↾n⟩ ∩W ⊆ U , and hence U ∩W is open in W. ■20
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The proposition is clearly true if “open” is replaced by “closed”. Also, given1

a set U ⊆ I and a family X ⊆ P (I) of web sets that is ⊆-cofinal among the web2

sets of I, the set U satisfies any condition of previous proposition if U ∩ W is3

open in W for all W ∈ X. The proposition allows us to define a new topology4

on ideals which is the main object of study of this work.5

Definition 1.3. Let I be an ideal. Define the bounded topology on I, denoted6

by τ
bd
, letting U ∈ τ

bd
if and only if U ⊆ I satisfies any of the conditions in7

Proposition 1.2.8

It follows directly from the definition that τ
bd

is finer than τ , hence (I, τ
bd
) is9

a Hausdorff space. As stated before, topological concepts refer to the topology10

τ , to differentiate between the two topologies we will use the prefix “τ
bd
-” on11

properties which refer to the bounded one. For example, we will say that K ⊆ I12

is τ
bd
-compact if it is compact in the topology τ

bd
, and we will say that it is a13

compact set if it is compact in the usual topology τ . Also, if W ⊆ I is a web set,14

then there is no difference considering W as a subspace in the bounded topology15

or in the usual topology, because in this case both topologies agree.16

The following relevant results will be used throughout the paper.17

Theorem 1.4 (Louveau and Veličković, [19, Theorem 1 and 2]). Let I be an18

analytic ideal.19

i) ∅×Fin ≤T I if and only if I is not the union of less than d weakly bounded20

sets of I.21

ii) If ∅ × Fin ≰T I, then I is an Fσ-ideal.22

Theorem 1.5 (Jalali-Naini [13] and Talagrand [27]). Let I be an ideal. I is23

meager if and only if there exists {Pn : n ∈ ω}, an interval partition of ω, such24

that (∀ I ∈ I) (∀∞ n ∈ ω) Pn ⊈ I.25

2. Topological and combinatorial results26

Proposition 2.1. Let I be an ideal. Then:27
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i) K ⊆ I is a τ
bd
-compact set if and only if K is a compact and weakly bounded.1

ii) S ⊆ I is a τ
bd
-closed and τ

bd
-discrete set if and only if S is a strongly2

unbounded.3

Proof. To prove the “if” part of i), let K ⊆ I be a compact and weakly bounded,4

and let U be an τ
bd
-open cover of K. By definition of the bounded topology,5

V = {U ∩ K : U ∈ U} is an open cover of K, and since K is compact, V has a6

finite subcover, then U has the corresponding finite subcover, hence K is τ
bd
-7

compact.8

To prove ii), let S ⊆ I be a τ
bd
-closed and τ

bd
-discrete set. By the previous9

paragraph, the set P (I) ⊆ I is a τ
bd
-compact set for all I ∈ I, so S ∩ P (I) is10

finite for all I ∈ I, hence that S is a sun set. For the other implication, let S ⊆ I11

be a strongly unbounded set, then for every weakly bounded W ⊆ I we have12

that S ∩W is finite, and hence it is closed in W. Therefore S is a τ
bd
-closed set13

in which any of its subsets is also a τ
bd
-closed set, so it is τ

bd
-discrete.14

To prove the missing part of i) let K ⊆ I be a τ
bd
-compact set, which is a15

compact set since τ ⊆ τ
bd
. Then K does not have any infinite τ

bd
-closed and16

τ
bd
-discrete subset, so it does not contain any infinite sun set and therefore it is17

a web set. ■18

So, if a sequence X ⊆ I τ
bd
-converges to some I ∈ I, it has a bounded19

subsequence which converges to I; on the other hand, if X converges to some20

I ∈ I and it is a web set, then X τ
bd
-converges to I. This result also implies that21

(I, τ
bd
) is a k-space, later we will show that, actually, it is a sequential space.22

As mentioned before, C ⊆ I is a τ
bd
-closed if and only if C ∩ W is closed in23

W for any web set W ⊆ I. The following result give us another characterization24

of τ
bd
-closed sets.25

Lemma 2.2. Let I be an ideal and F ⊆ I. The following are equivalent.26

i) F is a τ
bd
-closed set.27

ii) If there is a bounded sequence in F converging to some I ∈ I, then I ∈ F .28
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Proof. To see that i) implies ii), let X ⊆ F be a bounded sequence that converges1

to some I ∈ I. Then X ∪ {I} is weakly bounded. By Proposition 1.2(i), F ∩2

(X ∪ {I}) is a closed set in X ∪ {I}, therefore I ∈ F .3

For ii) implies i), let W ⊆ I be a web set and let I ∈ W be a limit point of4

F ∩W. Since W is weakly bounded, there is a bounded sequence X ⊆ F which5

converges to I. Then I ∈ F ∩W, and therefore F ∩W is a closed set in W. ■6

Next we mention some topological properties which hold for any ideal with7

the bounded topology.8

Theorem 2.3. Let I be an ideal. Then (I, τ
bd
) is a homogeneous, separable and9

sequential space.10

Proof. The previous lemma and Proposition 2.1 imply that (I, τ
bd
) is sequential.11

To prove separability, let U ⊆ I be an τ
bd
-open set and I ∈ U . Then U ∩P (I) is12

an open set in P (I) and there is some n ∈ ω such that ⟨I↾n⟩∩P (I) ⊆ U ∩P (I),13

hence U contains a finite subset of I. Therefore [ω]<ω ⊆ I is a τ
bd
-dense set.14

Given I ∈ I, let trsI : I → I be the bijection given by trsI(A) = A△I, i.e. the15

translation by I. For a bounded and convergent sequence X ⊆ I, trsI(X ) ⊆ I is a16

bounded and convergent sequence too, hence trsI is a τbd
-sequentially continuous17

map, and therefore it is a τ
bd
-homeomorphism. So, (I, τ

bd
) is homogeneous. ■18

The concepts of compactness and sequential compactness coincide in the19

bounded topology.20

Proposition 2.4. Let I be an ideal and K ⊆ I. K is a τ
bd
-compact set if and only21

if K is a τ
bd
-sequentially compact set.22

Proof. Since for metric spaces the concepts of compact and sequentially compact23

are the same and (W, τ
bd
↾W) = (W, τ↾W) for a weakly bounded set W, then24

it is enough to show that K ⊆ I is weakly bounded if it is τ
bd
-compact or τ

bd
-25

sequentally compact. For τ
bd
-compact set this holds by Proposition 2.1(i). Now26

let K ⊆ I be a τ
bd
-sequentially compact set, then any sequence of K has a τ

bd
-27

convergent subsequence, in particular, it has a bounded infinite subsequence,28

therefore K is weakly bounded. ■29
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The Arens space4 is the canonical example of a space which is sequential1

and not Fréchet–Urysohn. In fact, a sequential space is Fréchet–Urysohn if and2

only if it does not contains a copy of the Arens space, see [5]. We will use this3

to give a characterization of the bounded topology for P -ideals.4

Theorem 2.5. Let I be an ideal. (I, τ
bd
) is Fréchet–Urysohn if and only if I is a5

P -ideal.6

Proof. We will prove that I is a non-P -ideal if and only if (I, τ
bd
) contains the7

Arens space.8

Let F = {In : n ∈ ω} ⊆ I ∩ [ω]ω be a pairwise disjoint family witnessing

that I is not a P -ideal. Increasingly enumerate the set In = {inm : m ∈ ω}. For

n,m ∈ ω, let

Jn
m =

{
i0n
}
∪

n+1⋃
k=1

Ik \ {iab : 1 ≤ a ≤ n+ 1, b < m} .

We claim that the set A = {Jn
m : n,m ∈ ω} ∪ I0 ∪ {∅} ⊆ I is homeomorphic9

to the Arens space. The sequence
{{

i0n
}
: n ∈ ω

}
is bounded by I0, so it τ

bd
-10

converges to ∅. Since F is pairwise disjoint, all points in {Jn
m : n,m ∈ ω} are11

isolated. Also, for a fixed n, the sequence {Jn
m : m ∈ ω} τ

bd
-converges to

{
i0n
}

12

since it is bounded by
⋃
{Ik : k ≤ n+ 1}. Then it only remains to prove that13

for every g ∈ ωω, Xg = {Jn
g(n) : n ∈ ω} is a strongly unbounded set, because14

then every diagonal sequence in A does not τ
bd
-converge to ∅. Let X ⊆ Xg be15

an infinite set, since for every k ∈ ω there is some nk ∈ ω such that Ik ⊆∗Jnk

g(nk)
,16

then a bound for X is a pseudo-union for F , therefore Xg is, indeed, strongly17

unbounded.18

On the other hand, let A = {Inm : n,m ∈ ω}∪{In : n ∈ ω}∪{I} be a copy of19

the Arens space in (I, τ
bd
). For a fixed n ∈ ω the sequence Wn = {Inm : m ∈ ω}20

is weakly bounded because it τ
bd
-converges to In. By thinning out the space, we21

4The Arens space can be succinctly defined as the space with the underlying set the ordinal

ω2 + 1 with the strongest topology which makes the sequences {n · ω+ k : k ∈ ω} and {n · ω}

convergent and it is also finer that the order topology.
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can suppose that Wn is actually bounded by some Jn ∈ I. If (∀n ∈ ω) Jn ⊆∗J1

for some J ∈ I, then (∀n ∈ ω) (∀∞ m ∈ ω) Inm ⊆ I ∪ J . Hence there are an2

X ∈ [ω]ω and a g ∈ ωω such that the sequence {Ing(n) : n ∈ X} τ
bd
-converges3

to I. This, however, contradicts the hypothesis on A. Therefore {Jn : n ∈ ω}4

witnesses that I is not a P -ideal. ■5

In particular, if the space (I, τ
bd
) is metrizable (or even first-countable) then6

I is a P -ideal. So, τ = τ
bd

is only possible for P -ideals. The following result7

gives a sufficient and necessary condition for this equality.8

Theorem 2.6. Let I be an ideal. The following are equivalent.9

i) τ = τ
bd
.10

ii) Any compact subset of I is weakly bounded.11

iii) Any convergent sequence in I has a bounded subsequence.12

iv) I is a non-meager P -ideal.13

Proof. It follows directly that i) implies ii) implies iii).14

To see that iii) implies i), let I ∈ U for some τ
bd
-open set U ⊆ I. If for all15

n there exists In ∈ (⟨I↾n⟩ ∩ I) \ U then, by the hypothesis and since In → I,16

the set K = {In : k ∈ ω} ∪ {I} ⊆ I is compact and weakly bounded. Since17

U ∩ K = {I} then U is not an τ
bd
-open set. This proves that τ

bd
⊆ τ .18

For iii) implies iv) note that I is a non-meager ideal since by Theorem 1.5,19

any interval partition of ω converges to ∅. Now, let {In : n ∈ ω} ⊆ I and for20

n ∈ ω let Jn =
⋃

k≤n Ik \ n. Since {Jn : n ∈ ω} ⊆ I converges to ∅, there is a21

subsequence bounded by some I ∈ I which is a pseudo-union of {In : n ∈ ω}, so22

I is a P -ideal.23

iv) implies iii). Let {In : n ∈ ω} ⊆ I be a sequence which converges to24

I. Since I is a P -ideal, there is a J ∈ I such that for all n ∈ ω the set25

Fn = (In \ I) \ J is finite. Let {Em : m ∈ ω} be an interval partition of ω26

9



such that for all m ∈ ω, there is some nm ∈ ω with Fnm ⊆ Em, since I is non-1

meager. Then there is A ∈ [ω]ω such that L =
⋃
{Em : m ∈ A} ∈ I. Therefore,2

the subsequence {Inm
: m ∈ A} is bounded by I ∪ J ∪ L. ■3

Since Fin is the only ideal which is a strongly unbounded subset of itself, then4

by Proposition 2.1(ii) the bounded topology is discrete if and only if I = Fin.5

In this case, (I, τ
bd
) is homeomorphic to ω and, trivially, there is a set A ∈ I6

such that P (A) is a τ
bd
-open set. We know exactly for which ideals this holds.7

Lemma 2.7. Let I be an ideal and let A ∈ I. Then P (A) is an τ
bd
-open set if8

and only if I = Fin⊕ P (A) = {I ⊆ ω : |I \A| < ω}.9

Proof. If I = Fin ⊕ P (A) then it is straightforward to see that P (A) is an10

τ
bd
-open set since any weakly bounded subset of I has only finitely many points11

in its Fin part. On the other hand, let A ∈ I such that P (A) is an τ
bd
-open12

set and let B ∈ I. Since P (A) ∩ P (B) is an open set in P (B), there is some13

n ∈ ω such that ⟨(A ∩B)↾n⟩ ∩ P (B) ⊆ P (A) ∩ P (B), and then B \ n ∈ P (A),14

therefore B ⊆∗A for all B ∈ I which implies that I = Fin⊕ P (A). ■15

The lemma implies that the space (Fin ⊕ P (A) , τ
bd
) is homeomorphic to16

ω × 2ω and, in particular, it is locally compact. It turns out these are the only17

locally compact ideals in the bounded topology (compare to [23, Corollary 3.2]).18

Theorem 2.8. Let I be an ideal. Then (I, τ
bd
) is locally compact if and only if19

there is an A ∈ I such that I = Fin⊕ P (A).20

Proof. Let I be an ideal such that (I, τ
bd
) is a locally compact space. Then21

any point of the space has a τ
bd
-compact neighborhood which is a metric τ

bd
-22

subspace, then (I, τ
bd
) does not contain a copy of Arens space and therefore I23

is a P -ideal by Theorem 2.5.24

Now, let U be a τ
bd
-compact neighborhood of ∅ ∈ I. For any F ∈ [ω]<ω, let25

UF be the translation of U by F . Since [ω]<ω is a τ
bd
-dense set and translations26

are τ
bd
-homeomorphisms, {UF : F ∈ [ω]<ω} is a countable family of τ

bd
-compact27

sets that covers I. Therefore I is an Fσ-ideal and it is covered by countable many28

web sets. Using the theorem Theorem 1.4(i), we conclude that ∅ × Fin ≰T I.29
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Finally, a result due to S. Todorčević (see [28, Section 4]) claims that if I is1

an analytic P -ideal, then either I is countably generated or ∅ × Fin ≤T I. By2

all the previous, we conclude that I is a P -ideal which is countably generated,3

therefore there is some A ∈ I such that I = Fin⊕ P (A). ■4

We find a necessary condition for the regularity of the bounded topology.5

Definition 2.9. An ideal I has the shrinking property if for any pairwise dis-6

joint family {In : n ∈ ω} ⊆ I which is strongly unbounded, there is a strongly7

unbounded set {Fn : n ∈ ω} ⊆ [ω]<ω of I such that (∀n ∈ ω) Fn ⊆ In.8

Proposition 2.10. Let I be an ideal. If (I, τ
bd
) is a regular space, then I has the9

shrinking property.10

Proof. Let I be without the shrinking property and let S = {In : n ∈ ω} ⊆ I be11

a sun set witnessing that. We can assume that ∅ /∈ S. Let U be an τ
bd
-open set12

such that S ⊆ U . Then U ∩P (In) is open in P (In) for all n ∈ ω; therefore there13

is Fn ∈ [ω]<ω such that Fn ⊆ In and Fn ∈ U . By the hypothesis, and since14

Fn → ∅, there is a bounded subsequence {Fnk
: k ∈ ω} which τ

bd
-converges to15

∅. Hence U intersects any τ
bd
-open neighbourhood of ∅. So, the τ

bd
-closed set16

S and the point ∅ proves that (I, τ
bd
) is not regular. ■17

The ideal Fin× Fin does not have the shrinking property. To see this, note18

that S = {{n} × ω : n ∈ ω} is a sun set and every {Fn : n ∈ ω} ⊆ [ω × ω]<ω
19

such that (∀n) Fn ⊆ {n}×ω is a bounded family. Therefore (Fin×Fin, τ
bd
) is20

not a regular space.21

If we remove the assumption of disjointness on the hypothesis of Defini-22

tion 2.9, we have the following stronger property and some related result.23

Definition 2.11. An ideal I has the strong shrinking property if for any family24

{In : n ∈ ω} ⊆ I which is a strongly unbounded set of I, there is a strongly25

unbounded set {Fn : n ∈ ω} ⊆ [ω]<ω of I such that (∀n ∈ ω) Fn ⊆ In.26

Using the later Lemma 5.1, if I is an ideal such that the space (I, τ
bd
) is27

σ-compact then I has the strong shrinking property. For if {Kn : n ∈ ω} is the28
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family given by the lemma and S = {Sn : n ∈ ω} is a sun set of I; then choose1

F0 ⊆ S0 finite and assuming Fi ⊆ Si have been chosen for i ≤ n, note that Kn+12

can only contain finitely many elements from S, for those Sk such that k > n3

and Sk ∈ Kn+1 choose a finite Fk ∈ P(Sk) ∩ (Kn+1 \ Kn). Then the sequence4

{Fn : n ∈ ω} is necessarily a sun subset.5

Proposition 2.12. Let I be an ideal. If I has a perfect strongly unbounded6

subset, then I does not have the strong shrinking property.7

Proof. Let P ⊆ I be a perfect strongly unbounded set, andD ⊆ P be a countable8

dense subset. For all x ∈ D, let Fx ∈ [x]<ω. We recursively define a sequence9

⟨xn : n ∈ ω⟩ ⊆ D as follows: let x0 ∈ D, if xn is already defined, then let xn+1 ∈10

D such that min {k : xn(k) ̸= xn+1(k)} > maxFxn
. Since P is perfect, we can11

assume that ⟨xn : k ∈ ω⟩ converges to some x∗ ∈ P , hence (∀n ∈ ω)Fxn
⊆ x∗

12

and therefore {Fx : x ∈ D} is not a sun set. Thus D witnesses that I does not13

have the strong shrinking property. ■14

In order to give a sufficient condition for the regularity of the bounded topol-15

ogy, we will use a concept given by K. Kawamura, L. Oversteegen, and E.16

Tymchatyn in [15, Definition 1]. A topological space (X, τ1) is almost zero-17

dimensional if there is a topology τ0 coarser than τ1 such that (X, τ0) is a18

zero-dimensional space and every point in X has a τ1-neighborhood basis con-19

sisting of τ0-closed sets. For (I, τ
bd
), the usual topology seems to be the natural20

witness for that property, but this does not always hold since any almost zero-21

dimensional space is regular. Then, we have the following question.22

Question 2.13. If (I, τ
bd
) is an almost zero-dimensional space, then it is regu-23

lar, which in turn implies that I has the shrinking property. Which of these24

implications are reversible?25

3. Analytic P-ideals26

Definition 3.1. A function φ : P (ω) → [0,∞] is a submeasure if it is27

12



◦ [proper] (∀n ∈ ω) φ({n}) < ∞ and φ(∅) = 0.1

◦ [monotone] (∀A,B ⊆ ω) A ⊆ B → φ(A) ≤ φ(B)2

◦ [subadditive] φ(A ∪B) ≤ φ(A) + φ(B)3

If additionally (∀A ⊆ ω) φ(A) = limn φ(A ∩ n), then φ is a lower semicon-4

tinuous submeasure.5

One of the main results about analytic P -ideal is due to S. Solecki (see [23]), it6

says that I is an analytic P -ideal if and only if there exists a lower semicontinuous7

submeasure φ such that I = Exh (φ) = {X ⊆ ω : limn→∞ φ(X \ n) = 0}. In this8

section we prove that the topology τ
bd

coincides with the associated topology9

given by the Solecki’s Theorem. This is closely related to proving that analytic10

P-ideals are basic partial orders (see [26]).11

Lemma 3.2. Let φ be a lower semicontinuous submeasure and W ⊆ Exh (φ).

Then W is weakly bounded if and only if it satisfies

(∀ ε > 0) (∃N ∈ ω) (∀ I ∈ W) φ(I \N) < ε. (∗)

Proof. Let W ⊆ Exh (φ) and ε > 0 with (∀N ∈ ω) (∃ I ∈ W) φ(I \ N) ≥12

2ε. Then there is an increasing sequence {Nm : m ∈ ω} and a family S =13

{Im : m ∈ ω} ⊆ W such that φ (Im ∩Nm+1 \Nm) ≥ ε. Hence for an infinite14

X ⊆ S we have (∀N ∈ ω) φ (
⋃

X \N) ≥ ε, and then S is a sun set. Therefore15

any web set must satisfy (∗).16

Now, letW ⊆ Exh (φ) be an infinite set satisfying (∗) and X = {In : n ∈ ω} ⊆17

W. Without loss of generality, we can assume that X converges to I for some I ∈18

Exh (φ). For all m ∈ ω we increasingly choose a number Nm as a witness of (∗)19

for εm = 1
2m(m+1) such that there is Inm

∈ X with min {k ∈ ω : Inm
(k) ̸= I(k)} ∈20

[Nm, Nm+1). We have that J =
⋃
{Inm : m ≥ 1} ∈ Exh (φ) since φ(J \Nm) ≤21 ∑

k≥m
1
2k
, then X has a bounded subsequence and therefore W is a web set. ■22

For a lower semicontinuous submeasure φ, we denote by τφ to the topology23

on the ideal Exh (φ) induced by the metric dφ given by dφ(I, J) = φ(I△J).24
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Theorem 3.3. Let I be an analytic P -ideal and φ the associate lower semicon-1

tinuous submeasure. Then τ
bd

= τφ.2

Proof. For ε > 0, we define Bφ
ε = {J ∈ I : φ(J) < ε}.3

To see that τφ ⊆ τ
bd

is enough to prove that for all ε > 0, Bφ
ε is an τ

bd
-open4

set. Let K ⊆ I be a compact and web set, and let I ∈ Bφ
ε ∩ K. If for all n ∈ ω5

there is In ∈ (⟨I↾n⟩ ∩ K) \ Bφ
ε , then {In : n ∈ ω} ⊆ K is an infinite sun set,6

which contradicts that K is a web set. Hence, there is some n ∈ ω such that7

I ∈ ⟨I↾n⟩ ∩ K ⊆ Bφ
ε , and therefore Bφ

ε is an τ
bd
-open set.8

On the other hand, let U be an τ
bd
-open neighborhood of ∅. It is enough to9

prove that there is some ε > 0 such that Bφ
ε ⊆ U . If it is not the case, for all10

n ∈ ω there is some In ∈ Bφ
1/n

\U . By the previous lemma K = {In : n ∈ ω}∪{∅}11

is a compact and web set, but this contradicts that U is a τ
bd
-open set since12

U ∩ K = {∅}. ■13

It is not difficult to see that for an analytic P -ideal I the space (I, τ
bd
) is14

almost zero-dimensional with respect to the usual topology, because for all r > 015

the set {A ⊆ ω : φ(A) ≤ r} ⊆ I is closed in I since φ is semicontinuous. As will16

be shown in Theorem 5.11, the space (I, τ
bd
) is not zero-dimensional if I is a17

P -ideal which is Fσ and ∅ × Fin ≤T I.18

Proposition 3.4. Let I be an analytic P -ideal on ω. Then the closure of any19

weakly bounded set of I is also a weakly bounded set of I.20

Proof. Let φ a lower semicontinuous submeasure with I = Exh (φ). Let W ⊆ I21

be a web set, its straightforward to see that cl(W) ⊆ I by the properties of φ.22

Let X ⊆ cl(W) an infinite set, then there is a sequence {In : n ∈ ω} ⊆ X which23

converges to I for some I ∈ I.24

We claim that limn φ(In \I) = 0. If not, there exist ε > 0 and a subsequence25

{Ink
: k ∈ ω} such that (∀ k ∈ ω) φ((Ink

\I)∩mk) > ε, where mk = min(Ink+1\26

I). Since Ink
∈ cl(W), for all k ∈ ω there is some Wk ∈ W such that Wk∩mk =27

Ink
∩ mk. This implies that {Wk : k ∈ ω} ⊆ W is a sun set; thus the claim28
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holds. Finally, the previous lemma implies that the sequence {In : n ∈ ω} is a1

web set and therefore cl(W) is a web set too. ■2

The property in the conclusion of Proposition 3.4 will be relevant in the3

following section. We know that for a P -ideal, if it is analytic or non-meager,4

then its bounded topology is metrizable, we have the following question5

Question 3.5. Is there a P -ideal I such that (I, τ
bd
) is not a metric space?6

4. The conjecture of Louveau and Veličković7

Definition 4.1. Let I be an ideal. The weakly bounded number of I is defined as

web(I) = min
{
|X| : X ⊆ P (I) , (∀W ∈ X)W is a web set, and

⋃
X = I

}
.

From the definition it follows directly that web(I) ≤ cof (I) for any ideal8

I. It is straightforward to see that for any sun set S ⊆ I, |S| ≤ web(I). The9

following is a folklore result.10

Proposition 4.2. Let I, J be ideals such that I ≤T J. The following holds.11

i) web(I) ≤ web(J).12

ii) Let S ⊆ I be a sun set, then there is a sun set S ′ ⊆ J such that |S| = |S ′|.13

The extent of a topological space (X, τ), denoted by e(X, τ), is the supremum14

of the size of closed discrete subspaces of X. Hence, ω ≤ e(I, τ
bd
) ≤ web(I) since15

the set of all initial segments of ω is a sun set of any ideal I.16

K. Beros and P. Larson showed that the summable ideal, defined as I1/n =17 {
A ⊆ ω :

∑{
n−1 : n ∈ A \ {0}

}
converges

}
, has no uncountable sun sets (see18

[2, Proposition 3.4]). Also, S. Todorčević showed in [28] that I ≤T I1/n for any19

analytic P -ideal I. Then, by Proposition 4.2(ii), in this class of ideals we have20

that e(I, τ
bd
) = ω.21

If any web set of an ideal I is bounded, then web(I) = cof (I). Hence, using22

the following result, we deduce that web(∅ × Fin) = d.23
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Proposition 4.3. Any weakly bounded subset of ∅ × Fin is bounded.1

Proof. Let B ⊆ ∅ × Fin be an unbounded set, then
⋃

B ∩ {m} × ω is infi-2

nite for some m ∈ ω. Therefore, for any n ∈ ω exists Bn ∈ B such that3

max {k : (m, k) ∈ Bn} ≥ n. Hence the set {Bn : n ∈ ω} ⊆ B is a sun set, thus4

B is not a web set. ■5

Using the previous and our notation, Theorem 1.4 says that if I is an Fσ-6

ideal then ∅×Fin ≤T I if and only if web(I) ≥ d. A. Louveau and B. Veličković7

conjectured that this result can be improved.8

Conjecture 4.4 (Louveau and Veličković, [19, Conjecture 1]). Let I be an Fσ-9

ideal, then ∅ × Fin ≤T I if and only if web(I) > ω.10

We will prove that this holds for the following class of ideals.11

Definition 4.5. An ideal I has the web-closure property if the closure of any12

weakly bounded set of I is a weakly bounded set of I.13

Note that the closure of a web set seen in 2ω is the same that its closure seen14

in the ideal I. Indeed, let W ⊆ I be a web set and I ∈ cl(W), then there is a15

sequence {Wn : n ∈ ω} ⊆ W which converges to I. Since W is a web set, then16

there is a bounded subsequence {Wnk
: k ∈ ω} which also converges to I, then17

I ⊆
⋃

k∈ω Wnk
∈ I, therefore cl(W) ⊆ I. This helps to prove the following.18

Proposition 4.6. Let I be an ideal. Then I has the web-closure property if and19

only if any weakly bounded set of I is contained in some τ
bd
-compact set of I.20

Proof. To see the“only if”part, letW ⊆ I be a web set, by hypothesis cl(W) ⊆ I21

is a web set, and since it is a closed set of 2ω, then it is compact. Therefore,22

cl(W) is a τ
bd
-compact set and W is contained in it. On the other hand, let23

W ⊆ I be a web set, there is some τ
bd
-compact set K such that W ⊆ K. Since24

K is compact, then cl(W) ⊆ K, and since K is a web set, then cl(W) is also a25

web set. Therefore, I has the web-closure property. ■26

Corollary 4.7. Let I be an ideal with the web-closure property. Then web(I) is27

the minimum size of a family of τ
bd
-compact sets which covers I.28
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Proof. Let K(I) = min {|K| : (∀K ∈ K) K is a τ
bd
-compact set, and

⋃
K = I}.1

Since any τ
bd
-compact set is a web set, we always have that web(I) ≤ K(I).2

Moreover, since I has the web-closure property, then any web set is contained3

in some τ
bd
-compact set. Hence a witness for web(I) give us a witness for K(I),4

and therefore these are equal. ■5

Not every ideal has the web-closure property. Let T ⊆ ω×ω, we say that T is

infinite-triangular if T =
⋃

k∈ω {nk}× (nk+1−nk) for some increasing sequence

{nk : k ∈ ω}; and we say that T is finite-triangular if there is an increasing finite

sequence {n0, . . . , nm} such that T =
(⋃

k<m {nk} × (nk+1 − nk)
)
∪ {nm} × ω.

Note that ∅ is finite-triangular by the empty sequence. A set T ⊆ ω × ω is

triangular if it is either finite-triangular or infinite-triangular. Then, we define

the triangular ideal IT as follows

IT = ⟨{T ⊆ ω × ω : T is a triangular set}⟩.

Note that IT ⊆ Fin× Fin.6

Proposition 4.8. IT is a tall Fσ-ideal which does not have neither the shrinking7

property nor the web-closure property and it has a sun set of size c.8

Proof. For A ⊆ ω and n ∈ ω let A(n) be the n-th element of A, if exists.9

Then P (ω) is in correspondence with the set of triangular sets via the map10

T : P (ω) → ω × ω given by T(A) =
⋃

n∈ω {A(n)} × (A(n + 1) − A(n)) if11

A is infinite, T(A) =
(⋃k

n=0 {A(n)} × (A(n+ 1)−A(n))
)
∪ {A(k + 1)} × ω if12

|A| = k + 1 and T(∅) = ∅. Since T is a continuous map, the set of triangular13

sets is compact, and therefore IT is an Fσ-ideal.14

The definition of a triangular set directly implies that IT is a tall ideal.15

Therefore, the set W = {{n} ×m : n,m ∈ ω} ⊆ IT is a web set. Now, for all16

n ∈ ω, the set {n}×ω belongs to the closure ofW, and since {{n} × ω : n ∈ ω} ⊆17

IT is a sun set, the ideal IT does not has the web-closure property.18

Let A ⊆ [ω]ω be an almost disjoint family of size c. Let A0, . . . , An be19

n ≥ 1 distinct elements of A, then there is some N ∈ ω such that the family20

{Ai \N : i ≤ n} is pairwise disjoint, therefore exists m0, . . . ,mn ≥ N such that21

17



(∀ k < n) Ak(mk) < An(mn) < Ak(mk + 1) and, reindexing if necessary, also1

(∀ i < j < n) Ai(mi) < Aj(mj). For k ≤ n, let Bk = {Ak(mk)}×(Ak(mk+1)−2

Ak(mk)), by previous, if a triangular set covers Bk, then it cannot cover any Bl3

for k < l ≤ n, this implies that
⋃

k≤n T(Ak) cannot be covered by n triangular4

sets. Hence any infinite subset of S = {T(A) : A ∈ A} ⊆ IT is unbounded,5

therefore S is a sun set of size c.6

Finally, let {An : n ∈ ω} ⊆ P (ω) be a pairwise disjoint family such that7

(∀n ∈ ω) (∀ k < n) An(0) > Ak(n − k). By the previous paragraph, we have8

that {T(An) : n ∈ ω} is a sun set. Let Fn ∈ [T(An)]
<ω for all n ∈ ω. Recursively9

define sequences {nk : k ∈ ω} , {mk : k ∈ ω} ⊆ ω as follows. Start with n0 = 0.10

Suppose nk is already defined, since Fnk
is finite, let mk such that Fnk

⊆11

T(Ank
) ∩ Ank

(mk)× ω and choose nk+1 such that Ank+1
(0) > Ank

(mk). Then12

I =
⋃
{T(Ank

) ∩Ank
(mk)× ω : k ∈ ω} ∈ IT and hence {Fn : n ∈ ω} has a13

bounded infinite subset, therefore I has no the shrinking property. ■14

By Proposition 3.4 we know that any P -ideal is in the class of ideals with the

web-closure property; nevertheless, these classes are not equal. A witness for

that is the polynomial growth ideal, introduced in [19, Example 1] and defined

by the following

IP =
{
A ⊆ ω : (∃ k ∈ ω) (∀n ∈ ω) |A ∩ 2n| ≤ nk

}
.

It is tall, not countably generated, Fσ and not a P -ideal. Then ω =15

web(IP) < cof (IP) since for all k ∈ ω,Wk =
{
A ⊆ ω : (∀n ∈ ω) |A ∩ 2n| ≤ nk

}
⊆16

IP is a τ
bd
-compact set and the family {Wk : k ∈ ω} is a cover for IP. Using17

Theorem 5.2, we know that this ideal has the web-closure property.18

To prove that any ideal with the web-closure property satisfies the conjecture,19

we need some previous lemmas.20

Lemma 4.9. Let I be a meager ideal and let W ⊆ I be a weakly bounded set.21

Then W is nowhere dense in I.22

Proof. Let {Pn : n ∈ ω} be the interval partition of ω given by Theorem 1.5.23

Suppose that W is dense in I above some s ∈ 2<ω. Then, there is an increasing24
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sequence {sk : k ∈ ω} ⊆ 2<ω such that s0 = s and for every k ≥ 1 exists1

nk ∈ ω satisfying (∀m ∈ Pnk
) sk(m) = 1. Hence we can choose a subset S =2

{Sk : k ∈ ω} ⊆ W satisfying (∀ k ∈ ω) Pnk
⊆ Sk. Thus, due the property of the3

partition, S is a sun set of I, a contradiction. Therefore, W is a nowhere dense4

set on the ideal I. ■5

In what follows, if a, b ∈ [ω]<ω we use the notation a ⊑ b if a ⊆ b and6

(∀n ∈ a) (∀m ∈ b) m ≤ n → m ∈ a.7

Definition 4.10. Let I be an ideal. A family A = {as : s ∈ ω<ω} ⊆ [ω]<ω is a8

sun-branching tree on I if it satisfies the following.9

◦ a∅ = ∅.10

◦ (∀ s ∈ ω<ω) (∀n ∈ ω) as ⊑ as⌢n.11

◦ (∀ s ∈ ω<ω) {as⌢n : n ∈ ω} is a sun set of I.12

◦ (∀x ∈ ωω)
⋃
{ax↾n : n ∈ ω} ∈ I.13

A family F ⊆ [ω]<ω is a finite-branching tree on I if it satisfies all previous14

conditions but the third one replacing “sun” by “finite”; that is, only finitely15

many of the sets as⌢n are different.16

Lemma 4.11. Let I be an ideal. If there is a sun-branching tree on I, then17

web(I) ≥ d.18

Proof. Let A = {as : s ∈ ω<ω} ⊆ [ω]<ω be a sun-branching tree on I. For

X ⊆ A let

[X ]∞ =
{⋃{

ax↾n : n ∈ ω
}
: x ∈ ωω and (∃∞ n ∈ ω) ax↾n ∈ X

}
⊆ I.

Thus, [X ]∞ is the collection of elements in the ideal I which have infinitely19

many initial segments in a branch of X . We will prove that for any web set20

W ⊆ I exists F ⊆ A, a finite-branching tree on I, such that W ∩ [A]∞ ⊆ [F ]∞,21

which shows that web(I) ≥ d holds because d many sets of branches from finite-22

branching subtrees of the tree ω<ω are needed to cover the space ωω.23
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We can assume that W = W↓. For all s ∈ ω<ω let Fs = W ∩ {as⌢n :1

n ∈ ω}, then F =
⋃
{Fs : s ∈ ω<ω} ⊆ A is a finite-branching tree on I. Let2

I ∈ W ∩ [A]∞, there is x ∈ ωω such that (∀n ∈ ω) ax↾n+1
∈ A ∩ W and I =3 ⋃{

ax↾n : n ∈ ω
}
, then ax↾n+1

∈ Fx↾n for all n ∈ ω, and therefore I ∈ [F ]∞. ■4

Theorem 4.12. Let I be an Fσ-ideal with the web-closure property. Then either5

web(I) = ω or web(I) ≥ d.6

Proof. We define an infinite game with perfect information Gweb(I) as follows.7

I W0 W1 · · · Wn · · ·

II a0 a1 · · · an · · ·

At the nth move, Player I chooses a web set Wn of I such that Wn = W↓
n,8

and Player II chooses a finite subset an such that an /∈ Wn and an ⊑ an+1 for9

all n, this is possible by Lemma 4.9. Player II wins a run of the game if and10

only if
⋃
{an : n ∈ ω} ∈ I. Since I is Borel then Gweb(I) is determined due to11

Martin’s Determinacy Theorem for Borel games. So, we will consider the two12

cases.13

Case 1. Player I has a winning strategy, say σ. Since in every move Player14

II has countably many options to choose, σ determines a countable family of15

web sets of I, namely X, which consists of all responses of Player I in σ. Now,16

if there exists I ∈ I \
⋃
X then there is a run of the game in which Player II17

choose an initial segment of I in every move since W = W↓ for all W ∈ X, thus18

Player II would win the run, which is not possible by σ. Then
⋃
W = I and19

web(I) = ω.20

Case 2. Player II has a winning strategy, say λ. We will prove that exists a21

sun-branching tree on I. Let Xt =
{
a ∈ [ω]<ω : (∃W ⊆ I web set) t⌢(W, a) ∈ λ

}
22

for every t ∈ λ of even length, Xt cannot be a web set of I because Player II23

could not do his next move if Player I chooses X ↓
t as his move. Then, for every24

suitable t ∈ λ, let St ⊆ Xt be a countable sun set of I, and for every a ∈ St let25

Wt
a be a web set such that t⌢(Wt

a, a) ∈ λ. Let Nt =
{
t⌢(Wt

a, a) ∈ λ : a ∈ St

}
.26

Recursively define the sequence {Mn ∈ P (λ) : n ∈ ω} given by M0 = {∅} and27

20



Mn+1 =
⋃
{Nt : t ∈ Mn}. Finally, A = {∅}∪

⋃
n∈ω

⋃
t∈Mn

St is a sun-branching1

tree on I since every St is a sun set and λ is a winning strategy for Player II. ■2

By the previous result, the fact that web(∅ × Fin) = d, Theorem 1.4 and3

Proposition 4.2 we conclude the following.4

Corollary 4.13. Let I be an analytic ideal with the web-closure property. Then5

∅ × Fin ≤T I if and only if web(I) > ω.6

We have the following strengthening of Conjecture 4.4.7

Conjecture 4.14. Let I be an Fσ-ideal. Then either I has the web-closure prop-8

erty or I has a strongly unbounded set of size c.9

It is perhaps worth mentioning that that this consistently fails for analytic10

ideals by a result of T. Mátrai (see [20, Corollary 5.22])11

5. Fσ-ideals12

If (I, τ
bd
) is a σ-compact space, then I is an Fσ-ideal, since any τ

bd
-compact13

set is, in particular, a closed set. The following is a useful lemma for this14

topological property.15

Lemma 5.1. Let I be an ideal. If there is an increasing countable family of16

τ
bd
-compact sets K which covers the ideal and K = K↓ for all K ∈ K, then17

K is cofinal among the weakly bounded sets of I. Furthermore, if (I, τ
bd
) is18

σ-compact such family exists.19

Proof. For the first part, let K = {Kn : n ∈ ω} be such a family. Let S ⊆ I such20

that for all n ∈ ω there exists In ∈ S \Kn. Let X ⊆ {In : n ∈ A} be a bounded21

set. There is m ∈ ω such that
⋃

X ∈ Km = K↓
m and hence X ⊆ Km, thus X22

must be finite. We have that only finite subsets of {In : n ∈ A} are bounded,23

therefore S contains an infinite sun set. This shows that for any web set W ⊆ I24

there is some n ∈ ω such that W ⊆ Kn.25

We now prove that K↓ is a τ
bd
-compact set if K is, which is enough to prove26

the second part. Indeed, let K be a τ
bd
-compact set, then K↓ is a web set since27
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K is. Let {An : n ∈ ω} ⊆ K↓, then there is a family {Bn : n ∈ ω} ⊆ K such1

that An ⊆ Bn for all n ∈ ω. Since 2ω and K are compact sets, then there are a2

pair of subsequences {Ank
: k ∈ ω}, {Bnk

: k ∈ ω} which respectively converge3

to X ∈ 2ω and Y ∈ K. Finally, it is easy to see that X ⊆ Y , then K↓ is a4

compact set and therefore it is a τ
bd
-compact set. ■5

Now we can give a combinatorial characterization for the σ-compactness of6

the bounded topology.7

Theorem 5.2. Let I be an ideal. Then (I, τ
bd
) is a σ-compact space if and only8

if I has the web-closure property and web(I) = ω.9

Proof. If I has the web-closure property and web(I) = ω, then (I, τ
bd
) is a10

σ-compact space by Proposition 4.6. On the other hand, if (I, τ
bd
) is a σ-11

compact space then clearly web(I) = ω. Let {Kn : n ∈ ω} the family given by12

the previous lemma. We have that any web set of I is contained in Kn for some13

n ∈ ω. Thus, again by Proposition 4.6, I has the web-closure property. ■14

Using Corollary 4.13, we can write the previous result as follows.15

Theorem 5.3. Let I be an ideal. Then (I, τ
bd
) is a σ-compact space if and only16

if I has the web-closure property and ∅ × Fin ≰T I.17

Using Lemma 5.1 we can improve the properties of the space (I, τ
bd
) when18

it is σ-compact.19

Theorem 5.4. Let I be an ideal. If the space (I, τ
bd
) is σ-compact then it is a20

zero-dimensional topological group.21

Proof. Let {Kn : n ∈ ω} ⊆ P (I) be the family given by Lemma 5.1.22

For increasing f ∈ ω≤ω, let

Uf = {A ∈ I : (∀n ∈ dom(f))A ∩ f(n) ∈ Kn} .

Then Uf is a τ
bd
-clopen set since Uf ∩ P (I) is clopen in P (I) for all I ∈ I.23

For instance, fix I ∈ I and J ∈ Uf ∩ P (I); there is m ∈ ω such that I ∈ Km.24
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Without loss of generality we may assume that dom(f) ≥ m + 1. Letting1

s = χ
J∩f(m+1), it is not hard to see that ⟨s⟩ ∩P (I) ⊆ Uf for if X ∈ ⟨s⟩ ∩P (I),2

then X ∩ f(k) = J ∩ f(k) ∈ Kj , for all k ≤ m and X ∈ Kk for k > m as3

I ∈ Kk = K↓
k.4

We will show that {Uf : f ∈ ωω is increasing} is a local base at ∅ in (I, τ
bd
).

Let U be an τ
bd
-open neighbourhood of ∅. We will recursively define sequence

{sn : n ∈ ω} in order to get a map f =
⋃

n∈ω sn ∈ ωω such that Uf ⊆ U .

Since K0 ∩ U is open in K0 and ∅ belongs to it, there is some n0 such that

if t ∈ ωn0 is the function with constant value zero, then ⟨t⟩ ∩ K0 ⊆ U . Let

s0(0) = n0. Suppose that sk ∈ ωk+1 is already defined, say sk(i) = ni for i ≤ k,

and Usk ∩ Kk ⊆ U . We claim that there is some nk+1 > nk such that

Us⌢k nk+1
∩ Kk+1 ⊆ U (∗)

If there is no such nk+1, then for all n ∈ ω \ (nk + 1) there is some In ∈5

(Usk ∩Kk+1) \ U such that In ∩ n ∈ Kk. Since Kk+1 is a τ
bd
-compact set, there6

is a subsequence
{
Inj

: j ∈ ω
}
⊆ I \ U which τ

bd
-converges to some I ∈ Kk+1.7

However, the sequence
{
Inj

∩ nj : j ∈ ω
}
⊆ Usk ∩Kk also converges to I. That8

implies I ∈ Usk ∩ Kk, since Usk ∩ Kk is τ
bd
-closed; hence I ∈ U , but this9

contradicts that U is an τ
bd
-open set, thus (∗) holds for some nk+1 > nk and we10

let sk+1 = sk
⌢⟨nk+1⟩.11

Hence, {Uf : f ∈ ωω is increasing} will be a local base for neighbourhoods of12

∅ formed by τ
bd
-clopen sets. It follows that (I, τ

bd
) is a zero-dimensional space13

since it is homogeneous. Moreover, if f ∈ ωω is increasing, letting g(n) = f(2n),14

for all n ∈ ω, one gets that Ug△ Ug ⊆ Uf ; from which it follows that (I, τ
bd
) is15

a zero-dimensional topological group. ■16

We will use the following lemmas to show that all σ-compact and no locally17

compact spaces (I, τ
bd
) are homeomorphic to (Fin×∅, τ

bd
) (Theorem 5.8), which18

is one of them since it is countably generated.19

Lemma 5.5. Let I ̸= Fin be an ideal such that (I, τ
bd
) is σ-compact. Then there20

exist an increasing family of τ
bd
-compact sets {Kn : n ∈ ω} ⊆ P (I) which covers21
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I such that Kn = K↓
n and (Kn, τ↾Kn

) is homeomorphic to 2ω for all n ∈ ω.1

Proof. Let {Fn : n ∈ ω} be the family given by Lemma 5.1. Since I ̸= Fin we2

can suppose that any Fn is uncountable.3

Let n ∈ ω. By Cantor-Bendixon Theorem, there exists a perfect subset4

and a countable open subset of Fn, namely Kn and Cn respectively, such that5

Fn = Kn∪Cn. Since Fn = F↓
n, then I ∈ Fn is a condensation point of Fn if and6

only if there is some J ∈ Fn ∩ [ω]ω such that I ⊆ J . Therefore Kn = K↓
n and7

Cn ⊆ [ω]<ω. Also, for all n ∈ ω we have that Kn ⊆ Kn+1 because Fn ⊆ Fn+1.8

Finally, since for all F ∈ [ω]<ω there exist X ∈ I ∩ [ω]ω such that F ⊆ X, then9

{Kn : n ∈ ω} ⊆ P (I) cover I and it is the desired family. ■10

Lemma 5.6. Let I be an ideal and K ⊆ I be a τ
bd
-compact set. If K↓ is τ

bd
-11

nowhere dense, there is a τ
bd
-compact set K′ ⊆ I such that K ⊆ K′ and K is12

τ
bd
-nowhere dense in K′.13

Proof. Without loss of generality, we can assume that K = K↓. Since K has

empty interior and (I, τ
bd
) is sequential, there is a bounded sequence X =

{Fn : n ∈ ω} ⊆ I \ K which converges to ∅. Let

K′ = K ∪ {I ∪ Fn : I ∈ K, n ∈ ω} ⊆ I

Note that for all I ∈ K and n ∈ ω, I ∪ Fn /∈ K since K = K↓ and Fn /∈ K. We14

claim that K′ is the desired set.15

K′ is a web set since K is and X is bounded. To see K′ is compact let Y ⊆ K′
16

be a countable subset, then for all J ∈ Y there are IJ ∈ K and FnJ
∈ X such that17

J = IJ ∪ FnJ
, since K is compact we can assume that Z = {IJ : J ∈ Y} ⊆ K18

converges to some I ∈ K. We claim that Y has a convergent subsequence.19

Indeed, if there is an infinite subset Y ′ ⊆ Y such that (∀ I ∈ Y ′) FnJ
= FN for20

some N ∈ ω, then Y ′ converges to I ∪FN . Then we can assume that FnJ
̸= FnL

21

for any distinct J, L ∈ Y. Let n ∈ ω, since Z converges to I and X converges22

to ∅, we have that (∀∞ J ∈ Y) IJ ∈ ⟨I↾n⟩ and (∀∞ J ∈ Y) FnJ
∩ n = ∅. Then23

(∀n ∈ ω) (∀∞ J ∈ Y) J ∈ ⟨I↾n⟩, hence Y converges to I. Therefore K′ ⊆ I is24

τ
bd
-compact.25
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Finally, let U ⊆ K′ be an τ
bd
-open set of K′ such that there is some I ∈ U∩K.1

Since {I ∪ Fn : n ∈ ω} ⊆ K′ τ
bd
-converges to I, there is some J ∈ U \ K. Since2

K is τ
bd
-closed, there is some τ

bd
-open set V such that J ∈ V and V ∩ K = ∅.3

Hence, V ∩ U ⊆ U is a non-empty τ
bd
-open set of K′ disjoint to K. Therefore K4

is τ
bd
-nowhere dense in K′. ■5

We also need the following result due to B. Knaster and M. Reichbach56

Theorem 5.7 (Knaster and Reichbach, [16, Theorem 2]). Let X,Y be a pair of7

compact, perfect, zero-dimensional and metric spaces, and let X ′ ⊆ X, Y ′ ⊆ Y8

be closed nowhere dense subsets of its respective space. If φ′ : X ′ → Y ′ is a9

homeomorphism, then there exists a homeomorphism φ : X → Y extending φ′.10

Theorem 5.8. Let I be an ideal such that (I, τ
bd
) is a σ-compact space. Then11

either I = Fin⊕P (A) for some A ∈ I or (I, τ
bd
) is homeomorphic to (Fin×∅, τ

bd
).12

Proof. Suppose that I ̸= Fin⊕P (A) for any A ∈ I. Let {Kn : n ∈ ω} the family13

given by Lemma 5.5, since I is no locally compact then every Kn is τ
bd
-nowhere14

dense. Using Lemma 5.1 and Lemma 5.6 we can assume that Kn is a τ
bd
-nowhere15

dense subspace of Kn+1 for all n ∈ ω. Let Cn = (n + 1) × ω ∈ Fin × ∅. Using16

the previous theorem, we have that for all n ∈ ω there is a τ
bd
-homeomorphism17

φn : Kn → P (Cn) such that φn+1 extends φn. Let φ =
⋃

n∈ω φn, we claim that18

the bijective map φ : I → Fin× ∅ is a τ
bd
-homeomorphism.19

Let U ⊆ Fin× ∅ be an τ
bd
-open set. Since φ is injective,

φ−1[U ] ∩ Kn = φ−1
n [U ∩ Cn]

and then φ−1[U ] ∩ Kn is open in Kn for all n ∈ ω. Therefore φ−1[U ] ⊆ I is a20

τ
bd
-open set because the family {Kn : n ∈ ω} is cofinal among the web sets of I21

by Lemma 5.1. Thus φ is a τ
bd
-continuous map. Analogous arguments for φ−1

22

shows that φ is an τ
bd
-open map, therefore it is a τ

bd
-homeomorphism. ■23

5Originally due to C. Ryll-Nardzewski answering a problem by B. Knaster.
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Note that the homeomorphism given in the previous result does not preserve1

cofinal subsets, because cof (Fin× ∅) = ω < cof (JP) although (Fin×∅, τ
bd
) and2

(IP, τbd
) are homeomorphic spaces. We have the following question.3

Question 5.9. Theorem 5.8 inplies that all spaces (I, τ
bd
) which are σ-compact4

are homeomorohic. Are they equivalents as topological groups?5

Summarizing, the space (Fin × ∅, τ
bd
) is homogeneous, separable, sequen-6

tial, σ-compact, non-compact, zero-dimensional, topological group, and not7

Fréchet–Urysohn and hence neither metrizable nor second-countable.8

The Polish space known as the complete Erdös space Ec, defined as the9

closed subspace of ℓ2 such that (xn)n∈ω ∈ Ec if and only if (∀n ∈ ω) xn ∈10 {
1/m : m ∈ ω

}
∪ {0}, was introduced by P. Erdös in [6]. It is a totally discon-11

nected, one-dimensional and almost zero dimensional space (see [4]). J. Dijkstra12

and J. van Mill proved that if I is an Fσ P -ideal, then (I, τ
bd
) is not a σ-compact13

space if and only if it is homeomorphic to Ec (see [3, Theorem 4.15]). Using this14

result we prove the following.15

Theorem 5.10. Let I be an Fσ-ideal. Then the space (I, τ
bd
) is homeomorphic16

to Ec if and only if I is a P -ideal and ∅ × Fin ≤T I.17

Proof. If I is a P -ideal such that ∅×Fin ≤T I, then (I, τ
bd
) is no σ-generated by18

Theorem 5.3, and hence (I, τ
bd
) is homeomorphic to Ec. On the other hand, if19

(I, τ
bd
) is homeomorphic to Ec then the space is metrizable, hence I is a P -ideal20

by Theorem 2.5. By Proposition 3.4 the ideal I has the web-closure property.21

Then, again by Theorem 5.3, we conclude that ∅ × Fin ≤T I since (I, τ
bd
) is no22

a σ-compact space. ■23

Let I be an Fσ and P -ideal. Using a theorem by K. Mazur in [21], there is a24

lower semicontinuous submeasure φ such that I = Fin (φ) = {A ⊆ ω : φ(A) < 0}.25

For ε > 0, if {A ⊆ ω : φ(A) = ε} = ∅ then {A ⊆ ω : φ(A) < ε} is τ
bd
-clopen. So,26

if ∅ × Fin ≤T I, there exists ε > 0 such that (∀x ∈ [0, ε]) (∃A ⊆ ω) φ(A) = x,27

because otherwise (I, τ
bd
) ≃ Ec would be a zero-dimensional space.28
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Using some of the previous results, we give a classification of Fσ-ideals1

through its bounded topologies as follows.2

Theorem 5.11. Let I be an Fσ-ideal. Then:3

i) (I, τ
bd
) ≃ ω if and only if I = Fin.4

ii) (I, τ
bd
) ≃ ω × 2ω if and only if I = Fin⊕ P (A) for some infinite A ∈ I.5

iii) (I, τ
bd
) ≃ (Fin × ∅, τ

bd
) if and only if I has the web-closure property,6

∅ × Fin ≰T I and I ̸= Fin⊕ P (A) for any A ∈ I.7

iv) (I, τ
bd
) ≃ Ec if and only if I is a P -ideal and ∅ × Fin ≤T I.8

We conclude with some conjectures related with the previous result.9

Conjecture 5.12. Let I be an Fσ-ideal whose bounded topology does not satisfy10

any of the conditions in Theorem 5.11. Must I have a strong unbounded set of11

size c?12

If the previous is true then that would imply Conjecture 4.14 also in the13

positive.14

Question 5.13. Is there a result analogous to Theorem 5.11 for P -ideals?15

About the previus question, we conjecture the following.16

Conjecture 5.14. Let I be a P -ideal such that (I, τ
bd
) is no σ-compact. Then17

(I, τ
bd
) is homeomorphic either to ωω, Ec or Eω

c .18

6. A test space19

During his recent visit to Morelia, Alexander Shibakov pointed to us the im-20

portance of the following space in the structure of sequential topological groups21

(see [11], [12]). We are really thankful to him since his insight opened up some22

new paths.23
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◦ Convergent sequence of discrete sets (see [30]). Denoted byD(ω) is the set1

ω×ω∪{(ω, ω)} endowed with the topology that makes ω×ω discrete and2

such that the set {(ω \ k)× ω ∪ (ω, ω) : k ∈ ω} is a local basis for (ω, ω).3

The following related result is due to T. Banakh and L. Zdomsky̆ı.4

Theorem 6.1 (Banakh and Zdomsky̆ı, [1]). Let G be a sequential group in which5

every point is Gδ. If G contains a closed copy of D(ω) then it is Fréchet.6

Since any space (I, τ
bd
) is sequential, every point I ∈ I is τ

bd
-closed and by7

Theorem 2.5; we have the following.8

Theorem 6.2. Let I be a non P -ideal. If (I, τ
bd
) contains a closed copy of D(ω),9

then (I, τ
bd
) is not a topological group.10

An ideal I is a P+-ideal if for every decreasing sequence {An : n ∈ ω} ⊆ I+11

there is A ∈ I+ such that A ⊆∗An for all n ∈ ω. We have the following about12

these ideals.13

Proposition 6.3. Let I be a non P+-ideal, then (I, τ
bd
) contains a closed copy14

of D(ω).15

Proof. Let A = {An : n ∈ ω} ⊆ P (ω) \ I be a decreasing family witness that16

I is no a P+-ideal, we can assume that An \ An+1 /∈ I for all n ∈ ω. As17

before, let A(k) be the k-th element of a set A ⊆ ω then for all n,m ∈ ω let18

Imn = {(An \An+1) (k) : k ≤ m} ∈ I. We claim that D = {Imn : n,m ∈ ω}∪ {∅}19

is a closed copy of D(ω) in (I, τ
bd
).20

For a fixed n ∈ ω, the set Sn = {Imn : m ∈ ω} ⊆ I is a sun set since any21

infinite subset is unbounded, therefore Sn is a discrete set in the space (I, τ
bd
).22

Now, for any map f : ω → ω, the set {If(n)n : n ∈ ω} is disjoint and bounded,23

since is a pseudo-intersection of A, therefore it τ
bd
-converges to ∅. This shows24

that D satisfies what is desired. ■25

It is easy to find a copy of D(ω) inside (Fin × Fin, τ
bd
). Indeed, fix an26

infinite partition of ω formed by infinite subsets, say {Am : n ∈ ω}, and set27
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d(m,n) = Am×{n}, for all m,n ∈ ω. Then {d(m,n) : m,n ∈ ω}∪{∅} is a copy1

ofD(ω). The ideal ED = {A ⊆ ω×ω : (∃m,n ∈ ω) (∀k > m) |A∩({k}×ω)| ≤ n}2

also has a copy of D(ω). As in the case of Fin × Fin, considering an infinite3

partition of ω into infinite sets and using the same sets d(m,n) we have the4

columns of D(ω). In this case, any transversal selection has size one on each5

column, thus its union is an element of the ideal, then it τ
bd
-converging to ∅.6

Moreover, the ideal ED has a sun set of size c ([22, Theorem 1.6.4]).7

The following is known as the branching ideal

Br = ⟨
{
{x↾n : n ∈ ω} ⊆ 2<ω : x ∈ 2ω

}
⟩.

The space (Br, τ
bd
) does not has a copy of D(ω). To see this, note that for8

any countable family {An ⊆ 2<ω : An is antichain} we can recursively define a9

function x ∈ 2ω such that for all k ∈ ω there are infinitely many n ∈ ω such10

that |An ∩ ⟨x↾k⟩| = ω. Therefore, if D(ω) is embedding in (Br, τ
bd
) then any11

column of D(ω) contains an antichain, and by previous we can find a transver-12

sal selection which is sun set, therefore it does not τ
bd
-converge. Moreover,13

{{x↾n : n ∈ ω} : x ∈ 2ω} ⊆ Br is a sun set of size c.14

As mentioned in [20, Proposition 5.9], A. Louveau and B. Veličković noted15

in [19] that any ideal I with a sun set of size c is Tukey-top (that is, J ≤T I for16

any ideal J, in particular any two Tukey-top ideals are Tukey-equivalent). Then17

the ideals Br and ED are witnesses for the following.18

Proposition 6.4. There exists a pair of Tukey-equivalent ideals such that its19

bounded topologies are not homeomorphic.20

We know that the regularity of the bounded topology does not imply that21

the space is a topological group. As an example, (I1/n⊕ Fin× ∅, τ
bd
), where ⊕22

denotes the disjoint sum of ideals, is regular because (I1/n, τbd
) and (Fin×∅, τ

bd
)23

are. Also, it is not a topological group because (I1/n, τbd
) has a closed copy of24

S(ω) and (Fin×∅, τ
bd
) has a closed copy of D(ω), therefore (I1/n⊕Fin×∅, τ

bd
)25

has a closed copy of both spaces and, by Theorem 6.2, it is not a topological26

group.27
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Proposition 6.5. Let I be a maximal ideal, then (I, τ
bd
) is a topological group if1

and only if I is a P -ideal.2

Proof. Any maximal ideal I is non-meager. So, if it is a P -ideal then its bounded3

topology is the topology induced by 2ω (Theorem 2.6). On the other hand, by4

maximality, if I is a non P -ideal then it is a non P+-ideal. So, (I, τ
bd
) contains5

closed copies of S(ω) and D(ω). Therefore it is not a topological group. ■6

7. Open problems7

There seem to be many interesting directions for further research on the8

bounded topology, several of them directly related to the results of the paper.9

The first group of problems asks about combinatorial translations/characteriza-10

tions of natural topological properties of ideals endowed with the bounded topo-11

logy.12

Question 7.1. For which (Borel) ideals I is (I, τ
bd
) a topological group?13

One has to wonder if for Borel ideals this happens if and only if the ideals14

have the web-closure property, in particular if such ideals have to be either15

P-ideals or σ-weakly bounded ones.16

A related question is:17

Question 7.2. For which (Borel) ideals I is (I, τ
bd
) regular?18

For the following question one would suspect that (I, τ
bd
) is Lindelöf if and19

only if every strongly unbounded subset of I is countable.20

Question 7.3. For which (Borel) ideals I is (I, τ
bd
) Lindelöf?21

The relationship between separability and the Lindelöf property is one of22

István Juhász’s favourite subjects (see e.g. [8], [14]).23

An interesting question is to give an external characterization of spaces of the24

type (I, τ
bd
). We know they have to be homogeneous, separable and sequential25

with a weaker homogeneous zero-dimensional metric topology.26
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Question 7.4. Which topological spaces are homeomorphic to (I, τ
bd
) for some1

(Borel) ideal I?2

We know they have to be homogeneous, separable and sequential with a3

weaker homogeneous zero-dimensional metric topology. Is this sufficient?4

A related problem also asks about the variety of these examples:5

Question 7.5. Are there infinitely (uncountably) many Borel ideals I such that6

the spaces I is (I, τ
bd
) are mutually non-homeomorphic?7

Another series of problems deals with non-definable ideals8

Question 7.6. For which ideals I is (I, τ
bd
) metrizable?9

We know that such ideals would have to be P-ideals, and we know that for10

analytic and non-meager ones this characterizes metrizability but in general we11

do not know. So, in particular, we do not know if there is (even consistently)12

an ideal which is Fréchet-Urysohn but not metrizable.13

Question 7.7. Is it consistent that all ultrafilters (or rather all maximal ideals)14

when endowed with the bounded topology are mutually homeomorphic?15

Finally, we repeat the probably most interesting questions mentioned already16

in the text which ask about the complete topological classification of ideals which17

are Fσ, resp. P-ideals:18

Question 7.8. Is every analytic P-ideal with the bounded topology homeomor-19

phic to one of ω, ω × 2ω, ωω, Ec or Eω
c ?20

Question 7.9. Is every Fσ-ideal without a perfect strongly unbounded subset21

with the bounded topology homeomorphic to one of ω, ω× 2ω, (Fin×∅, τ
bd
) or22

Ec?23
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[22] Meza-Alcántara, D. (2009). Ideals and Filters on countable sets. Ph.D.16

thesis Universidad Nacional Autónoma de México.17
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