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DEFINING PROBABILISTIC MODELS

The Joint Probability Distribution (JPD) of a set of
n binary variables involve a huge number of param-
eters 2n (larger than 1025 for only 100 variables).

x y z p(x, y, z)
0 0 0 0.12
0 0 1 0.18
0 1 0 0.04
0 1 1 0.16
1 0 0 0.09
1 0 1 0.21
1 1 0 0.02
1 1 1 0.18

We can use the qualitative structure of the model to
simplify the probabilistic structure.
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CONDITIONAL PROBABILITY.
INDEPENDENCE

Definición 1 Conditional probability. Let X
and Y be two disjoint subsets of variables such that
p(y) > 0. Then, the conditional probability distribu-
tion (CPD) of X given Y = y is given by

p(X = x|Y = y) = p(x|y) =
p(x, y)
p(y)

. (1)

Definición 2 Independence of two variables.
Let X and Y be two disjoint subsets of the set of
random variables {X1, . . . ,Xn}. Then X is said to
be independent of Y if and only if

p(x|y) = p(x), (2)

for all possible values x and y of X and Y ; otherwise
X is said to be dependent on Y .

Also, if X is independent of Y , we can then combine
(1) and (2) and obtain which implies

p(x, y) = p(x)p(y). (3)

If {X1, . . . , Xm} are independent, then

p(x1, . . . , xm) =
m∏

i=1
p(xi), (4)
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CONDITIONAL INDEPENDENCE

Definición 3 Conditional independence. Let
X, Y and Z be three disjoint sets of variables, then
X is said to be conditionally independent of Y given
Z, if and only if

p(x|z, y) = p(x|z). ↔ p(x, y|z) = p(x|z)p(y|z).

When X and Y are conditionally independent given
Z, we write I(X, Y |Z). The statement I(X, Y |Z) is
referred to as a conditional independence state-
ment (CIS). Similarly, when X and Y are condition-
ally dependent given Z, we write D(X,Y |Z), which
is called a conditional dependence statement.
The definition of conditional independence conveys
the idea that once Z is known, knowing Y can no
longer influence the probability of X. In other words,
if Z is already known, knowledge of Y does not add
any new information about X.

Note that (unconditional) independence can be
treated as a particular case of conditional indepen-
dence. For example, we can write I(X, Y |φ), to
mean that X and Y are unconditionally indepen-
dent.
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FACTORIZATIONS OF A JPD

Definición 4 Factorization by potentials. Let
C1, . . . , Cm be subsets of a set of variables X =
{X1, . . . , Xn}.

p(x1, . . . , xn) =
m∏

i=1
Ψi(ci),

where the functions Ψi, called factor potentials, are
nonnegative.

Definición 5 Chain rule factorizations. Any
JPD of a set of ordered variables {X1, . . . ,Xn} can
be expressed as a product of m CPDs of the form

p(x1, . . . , xn) =
m∏

i=1
p(yi|bi), (5)

where Bi = {Y1, . . . , Yi−1}.

Ejemplo 1 Chain rule. Consider a case of four
variables {X1, . . . ,X4}. Then the following are
equivalent chain rule factorizations of the JPD:

p(x1, . . . , x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

and

p(x1, . . . , x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4).
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IMPOSING INDEPENDENCIES

Consider the variables {X1,X2,X3, X4} and suppose
we have:

I(X3, X1|X2) and I(X4, {X1,X3}|X2). (6)

We wish to compute the constraints among the pa-
rameters of the JPD imposed by these CISs. The
first of these statements implies

p(x3|x1, x2) = p(x3|x2), (7)

and the second statement implies

p(x4|x1, x2, x3) = p(x4|x2). (8)

Note that the general form of the JPD is not a suit-
able representation for calculating the constraints
given by (7) and (8). However, by using these two
equalities we obtain

p(x1, . . . , x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2). (9)

Therefore, the two CISs in (6) give rise to a reduction
in the number of parameters from 15 to 7.
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DEPENDENCY MODELS.
SEPARATION

Definición 6 Dependency model. Any model
M of a set of variables {X1, . . . ,Xn} from which
we can determine whether I(X, Y |Z) is true, for all
possible triplets of disjoint subsets X, Y , and Z, is
called a dependency model.

A JPD (with the definition of conditional indepen-
dence) is a dependency model. A graph can also
define a dependency model (using the corresponding
separation criterion),
The qualitative structure of a probabilistic model
can be represented by a graphical dependency model
that provides a way to factorize the corresponding
JPD.

Definición 7 U-separation. Let X, Y , and Z be
three disjoint subsets of nodes in an undirected graph
G. We say that Z separates X and Y iff every path
between each node in X and each node in Y contains
at least one node in Z. When Z separates X and Y
in G, we write I(X, Y |Z)G; otherwise D(X, Y |Z)G.

Given an undirected graph, one can derive all CISs
from the graph using the above U -separation crite-
rion.
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U-SEPARATION EXAMPLE

A

B C

D E F

H IG

(a) I(A, I | E)

A

B C

D E F

H IG

(b) D(A, I | B)

A

B C

D E F

IG

(c) I({A, C}, {D, H} | {B, E})

H

A

B C

D E F

IG

(d) D({A, C}, {D, H} | {E, I})

H

• Every path between A and I contains E. Thus, I(A, I|E)G.

• There is a path (A−C −E − I) that does not contain B. Thus
I(A, I|B)G.

• Every path between the two subsets contains either B or E.
I({A,C}, {D, H}|{B, E})G.

• There is a path (A−B−D} that does not contain the variables
E and I .
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D-SEPARATION

Definición 8 D-Separation. Let X, Y , and Z be
three disjoint subsets of nodes in a DAG D; then
Z is said to D-separate X and Y , iff along every
undirected path from each node in X to each node in
Y there is an intermediate node A such that either

1. A is a head-to-head node in the path, and neither
A nor its descendants are in Z, or

2. A is not a head-to-head node in the path and A
is in Z.

When Z D-separates X and Y in D, we write
I(X, Y |Z)D to indicate that this CIS is derived from
D; otherwise we write D(X, Y |Z)D to indicate that
X and Y are conditionally dependent given Z in the
graph D.

Definición 9 D-Separation. Let X, Y , and Z be
three disjoint subsets of nodes in a DAG D, then Z
is said to D-separate X and Y iff Z separates X
and Y in the moral graph of the smallest ancestral
set containing X, Y , and Z.
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D-SEPARATION EXAMPLE

H

Employment Investment income

Health

HappinessContributions

Wealth

C P

E V

W

E V

W H

C P

(c) I(C, P | {E, W}) (d) D(C, {H, P} | E)

E V

W H

C P

E V

W

C P

(b) D(E, H | P)

H

E V

W H

C P

(a) I(E, V | Ø)
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PROPERTIES OF
CONDITIONAL INDEPENDCE

• Symmetry: If X is conditional independent
(c.i.) of Y , then Y is c.i. of X

I(X, Y |Z) ⇔ I(Y, X|Z).

• Decomposition: If X is c.i. of Y ∪ W given Z,
then X is c.i. of Y given Z, and X is c.i. of W
given Z, that is,

I(X, Y ∪ W |Z) ⇒ I(X, Y |Z) and I(X, W |Z).

• Weak Union:

I(X, Y ∪W |Z) ⇒ I(X, W |Z∪Y ) and I(X,Y |Z∪W ).

• Contraction: If W is irrelevant to X after the
learning of some irrelevant information Y , then
W must have been irrelevant before we knew Y ,
that is,

I(X, W |Z ∪Y ) and I(X,Y |Z) ⇒ I(X, Y ∪W |Z).

The weak union and contraction properties together
mean that irrelevant information should not alter the
relevance of other relevant information in the system.
In other words, what was relevant remains relevant,
and what was irrelevant remains irrelevant.

The above four properties hold for any JPD.

10



PROBABILISTIC NETWORK MODELS: BAYESIAN NETWORKS

Cantabria
University

GRAPHICAL ILLUSTRATION
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(c) Weak Union
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(a) Symmetry (b) Decomposition
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(e) Intersection
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OTHER PROPERTIES

1. Strong Union: If X is c.i. of Y given Z, then
X is also c.i. of Y given Z ∪ W , that is,

I(X, Y |Z) ⇒ I(X,Y |Z ∪ W ).

Strong union property violation by DAGs.

(a)

Z

X

Y

W Z

X

Y

W

(b)

2. Intersection:

I(X, W |Z ∪ Y ) and I(X,Y |Z ∪ W ) ⇒ I(X, Y ∪ W |Z).

3. Strong Transitivity:

D(X, A|Z) and D(A, Y |Z) ⇒ D(X, Y |Z),

4. Weak Transitivity:

D(X,A|Z) and D(A, Y |Z) ⇒ D(X,Y |Z) or D(X, Y |Z ∪A),

5. Chordality:

D(A,C|B) and D(A,C|D) ⇒ D(A, C|B∪D) or D(B, D|A∪C),
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GRAPHICAL ILLUSTRATION

(d) Chordality
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GRAPHICAL REPRESENTATIONS OF
PROBABILISTIC MODELS

Graphs display the relationships among the variables
explicitly and are intuitive and easy to explain. It
is important to analyze whether or not dependence
models associated with probabilistic models can be
given by graphical models.

Definición 10 Perfect map. A graph G is said to
be a perfect map of a dependency model M if every
CIS derived from G can also be derived from M and
vice versa, that is,

I(X, Y |Z)M ⇔ I(X, Y |Z)G ⇔ Z separates X from Y.

Unfortunately, not every dependency model can be
represented by a directed or undirected perfect map.

Ejemplo 2 Dependency model with no di-
rected perfect map. Consider the set of three
variables {X, Y, Z} and the dependency model

M = {I(X,Y |Z), I(Y, Z|X), I(Y,X|Z), I(Z, Y |X)}.

There is no directed acyclic graph (DAG) D that is
a perfect map of the dependency model M .
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MODEL WITH NO UNDIRECTED
PERFECT MAP

M = {I(X,Y |φ), I(Y, X|φ)},

X

Y Z

X

Y Z

(a)

X

Y Z

(c)

X

Y Z

(f)

X

Y Z

(h)

(b)

X

Y Z

(d)

X

Y Z

(e)

X

Y Z

(g)

Graph G G not in M M not in G

(a) I(X,Z|φ) φ

(b) I(X,Z|φ) I(X, Y |φ)
(c) I(Y, Z|φ) φ

(d) I(X,Z|φ) φ

(e) I(Y,Z|X) I(X, Y |φ)
(f) I(X,Z|Y ) I(X, Y |φ)
(g) I(X,Y |Z) I(X, Y |φ)
(h) φ I(X, Y |φ)
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I-MAPS AND D-MAPS

Definición 11 Independence map. A graph G is
said to be an independence map (I-map) of a depen-
dency model M if

I(X, Y |Z)G ⇒ I(X, Y |Z)M ,

that is, if all CISs derived from G hold in M .

Definición 12 Dependency map. A graph G is
said to be a dependency map (D-map) of a depen-
dency model M if

D(X, Y |Z)G ⇒ D(X, Y |Z)M ,

that is, all CISs derived from G hold in M .

Definición 13 Minimal I-map. A graph G is said
to be a minimal I-map of a dependency model M if
it is an I-map of M , but it is not an I-map of M
when removing any link from it.
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MODELS WITH UNDIRECTED
PERFECT MAPS

A necessary and sufficient condition for a depen-
dency model M to have an undirected perfect map
is that M must satisfy the following properties:

• Symmetry:

I(X,Y |Z)M ⇔ I(Y, X|Z)M .

• Decomposition:

I(X, Y ∪W |Z)M ⇒ I(X, Y |Z)M and I(X, W |Z)M .

• Intersection:

I(X, W |Z ∪ Y )M and I(X,Y |Z ∪ W )M ⇒ I(X, Y ∪W |Z)M .

• Strong union:

I(X, Y |Z)M ⇒ I(X,Y |Z ∪ W )M .

• Strong transitivity:

I(X, Y |Z)M ⇒ I(X, A|Z)M or I(Y, A|Z)M ,

where A is a single node not in {X, Y, Z}.
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MARKOV NETWORKS

Definición 14 Markov network. A Markov net-
work is a pair (G, Ψ) where G is an undirected graph
and Ψ = {ψ1(c1), . . . , ψm(cm)} is a set of positive po-
tential functions defined on the cliques C1, . . . , Cm of
G that defines the JPD p(x) as

p(x) =
n∏

i=1
ψi(ci). (10)

If the undirected graph G is triangulated, then p(x)
can also be factorized, using probability functions
P = {p(r1|s1), . . . , p(rm|sm)}, as

p(x1, . . . , xn) =
m∏

i=1
p(ri|si), (11)

where Ri and Si are the separator and residual of
the cliques. In this case, the Markov network model
is defined by (G,P ). The graph G is an undirected
I-map of p(x).

Thus, a Markov network can be used to define
the qualitative structure of a probabilistic model
through a factorization of the corresponding JPD in
terms of potential functions or probability functions.
The quantitative structure is then obtained by nu-
merically specifying the functions appearing in the
factorization.
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MARKOV NETWORKS
EXAMPLE

A

B C

D E F

C1

C2
C3 C4

(a) (b)

A

B C

D E F

1

2

5

3

64

The cliques of the graph are :

C1 = {A,B,C}, C2 = {B, C, E},
C3 = {B, D}, C4 = {C, F}.

(12)

p(a, b, c, d, e, f) = ψ1(c1)ψ2(c2)ψ3(c3)ψ4(c4)
= ψ1(a, b, c)ψ2(b, c, e)ψ3(b, d)ψ4(c, f ). (13)

Since the graph is triangulated, another factorization of the JPD in
terms of probability functions can be obtained

i Clique Ci Separator Si Residual Ri

1 A,B, C φ A,B,C

2 B, C, E B,C E

3 B, D B D

4 C, F C F

p(a, b, c, d, e, f) =
4∏

i=1
p(ri|si)

= p(a, b, c)p(e|b, c)p(d|b)p(f |c). (14)
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MODELS WITH DIRECTED
PERFECT MAPS

A necessary condition for a dependency model M to
have a directed perfect map is that M must satisfy
the following properties:

• Symmetry: I(X, Y |Z)M ⇔ I(Y, X|Z)M .

• Composition-Decomposition:

I(X, Y ∪ W |Z)M ⇔ I(X, Y |Z)M and I(X, W |Z)M .

• Intersection:

I(X, W |Z ∪ Y )M and I(X,Y |Z ∪ W )M ⇒ I(X, Y ∪W |Z)M .

• Weak union:

I(X, Y ∪ Z|W )M ⇒ I(X,Y |W ∪ Z)M .

• Weak transitivity:

I(X, Y |Z)M and I(X,Y |Z∪A)M ⇒ I(X,A|Z)M orI(Y, A|Z)M ,

• Contraction:

I(X,Y |Z ∪ W )M and I(X,W |Z)M ⇒ I(X, Y ∪ W |Z)M .

• Chordality:

I(A,B|C∪D)M , I(C,D|A∪B)M ⇒ I(A, B|C)M or I(A,B|D)M ,
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BAYESIAN NETWORKS

Definición 15 Bayesian network. A Bayesian
network is a pair (D,P ), where D is a DAG, P =
{p(x1|π1), . . . , p(xn|πn)} is a set of n CPDs, one for
each variable, and Πi is the set of parents of node Xi

in D. The set P defines the associated JPD as

p(x) =
n∏

i=1
p(xi|πi). (15)

The DAG D is a minimal directed I-map of p(x).

Example

C D E

F G

A B

p(X) = p(a)p(b)p(c|a)p(d|a, b)p(e)p(f |d)p(g|d, e).
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