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EVIDENCE PROPAGATION

Propagation of evidence consists of updating the
probability distributions of the variables according
to the newly available evidence. For example, we
need to calculate the conditional distribution of each
element of a set of variables of interest (e.g., diseases)
given the evidence (e.g., symptoms).

There are three types of algorithms for propagating
evidence: exact, approximate, and symbolic.

Suppose we have a set of discrete variables X =
{X1, . . . , Xn} and a JPD, p(x), over X. Before any
evidence is available, the propagation process con-
sists of calculating the marginal probability distri-
bution (MPD) p(Xi = xi), or simply p(xi), for each
Xi ∈ X.

Now, suppose that some evidence has become avail-
able, that is, a set of variables E ⊂ X are known
to take the values Xi = ei, for Xi ∈ E (evidential
variables). In this situation, propagation of evi-
dence consists of calculating the conditional proba-
bilities p(xi|e).
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EVIDENCE PROPAGATION: ALGORITHMS

Consider the graph in the figure below which implies

p(x) = p(a)p(b)p(c|a)p(d|a, b)p(e)p(f |d)p(g|d, e),

C D E

F G

A B

Brute-force method

p(d) = ∑

x\d
p(x) = ∑

a,b,c,e,f,g
p(a, b, c, d, e, f, g).

Optimizing the summations

p(d) = ∑

a,b,c,e,f,g
p(a)p(b)p(c|a)p(d|a, b)p(e)p(f |d)p(g|d, e)

=



∑

a,b,c
p(a)p(b)p(c|a)p(d|a, b)







∑

e,f,g
p(e)p(g|d, e)p(f |d)


 ,

∑

a


p(a) ∑

c


p(c|a) ∑

b
p(b)p(d|a, b)






∑

e


p(e) ∑

f


p(f |d) ∑

g
p(g|d, e)





 .
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PROPAGATION IN POLYTREES

The evidence E can be decomposed into two subsets:

• E+
i , the subset of E that can be accessed from Xi

through its parents.

• E−
i , the subset of E that can be accessed from Xi

through its children.

C D E

F G

A B

D

p(xi|e) = p(xi|e−
i , e+

i ) =
1

p(e−
i , e+

i )
p(e−

i , e+
i |xi)p(xi).

Since Xi separates E−
i from E+

i in the polytree, then
the CIS I(E−

i , E+
i |Xi) holds; hence we have

p(xi|e) =
1

p(e−
i , e+

i )
p(e−

i |xi) p(e+
i |xi)p(xi)

=
1

p(e−
i , e+

i )
p(e−

i |xi) p(xi, e
+
i )

= k λi(xi) ρi(xi),
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PROPAGATION IN POLYTREES

To compute the functions λi(xi) and ρi(xi), sup-
pose that a typical node Xi has p parents, U =
{U1, . . . , Up}, and c children, Y = {Y1, . . . , Yc}.

X

U1 Up

Y1 Yc

i

E  U1 Xi

+ E Up Xi

+

E Xi Y1
- E Xi Yc

-

E Xi

+

E Xi
-

The evidence E+
i can be partitioned into p disjoint

components, one for each parent of Xi:

E+
i = {E+

U1 Xi
, . . . , E+

Up Xi
}, (1)

where the evidence E+
Uj Xi

is the subset of E+
i con-

tained in the Uj-side of the link Uj → Xi.

Similarly, the evidence E−
i can be partitioned into c

disjoint components.
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SENDING MESSAGES

Let u = {u1, . . . , up} be an instantiation of the par-
ents of Xi:

ρi(xi) = p(xi, e
+
i ) = ∑

u
p(xi, u ∪ e+

i )

= ∑

u
p(xi|u ∪ e+

i )p(u ∪ e+
i )

= ∑

u
p(xi|u ∪ e+

i )p(u ∪ e+
U1 Xi

∪ . . . ∪ e+
Up Xi

).

Due to the fact that {Uj, E
+
Uj Xi

} is independent of
{Uk, E

+
Uk Xi

}, for j 6= k, we have

ρi(xi) = ∑

u
p(xi|u ∪ e+

i )
p∏

j=1
p(uj ∪ e+

Uj Xi
), (2)

and
ρUj Xi

(uj) = p(uj ∪ e+
Uj Xi

) (3)
is the ρ-message that node Uj sends to its child Xi.

X

U1 Up

Y1 Yc

i

ρ U1Xi

ρ XiY1

λ XiU1

λ Y1Xi λ YcXi

λ XiUp

ρ XiYc

ρ UpXi
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PROPAGATION IN POLYTREES
ALGORITHM

• Input: A Bayesian network model (D,P ) over a
set of variables X and a set of evidential nodes
E with evidential values E = e, where D is a
polytree.

• Output: The CPD p(xi|e) for every noneviden-
tial node Xi.

EQUATIONS

βi(xi) = λi(xi)ρi(xi). (4)

ρi(xi)
∑

u
p(xi|u ∪ e+

i )
p∏

j=1
ρUj Xi

(uj), (5)

λi(xi) =
c∏

j=1
λYj Xi

(xi), (6)

where
λYj Xi

(xi) = p(e−
Xi Yj

|xi) (7)

ρXi Yj
(xi) ∝ ρi(xi)

∏

k 6=j
λYk Xi

(xi). (8)

λYj Xi
(xi) = ∑

yj
λYj

(yj)
∑

v1,...,vq
p(yj|πYi

)
q∏

k=1
ρVk Yj

(vk).

(9)
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PARALLEL IMPLEMENTATION

The structure of message-passing makes the algo-
rithm suitable for a parallel implementation. As-
sume that each node has its own processor.

λXi U1(u1) λXi Up(up)

λXi Uk(uk)Equation for

ρU1 Xi(u1) ρUp Xi(up)

λi(xi)Equation for

p(xi|e)p(xi|e)Equation for

Equation for ρUk Xi(uk)

p(xi|u)

ρXi Y1(xi) ρXi Yc(xi) λY1 Xi(xi) λYc Xi(xi)

ρ
i(xi)Equation for
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AN EXAMPLE OF
THE POLYTREES ALGORITHM

8
7

10 11

9

ρ (2)

ρ (4)

λ (3)

λ (5) λ (6)

ρ (1)

C D E

F G

A B

λ (14)ρ (13)

ρ (19) ρ (20)

17 18
12

1615

21

λ (22) λ (24)

λ (26)

ρ (25)

23

a ρ λ
0
1

0.3
p(a)

0.7
1.0
1.0

0.3
0.7

0.3
0.7

β
A

b ρ λ
0
1

0.6
p(b)

0.4
1.0
1.0

0.6
0.4

0.6
0.4

β
B

d ρ λ
0
1

0.462
p(d)

0.538
1.0
1.0

0.462
0.538

0.462
0.538

β
D

e ρ λ
0
1

0.1
p(e)

0.9
1.0
1.0

0.1
0.9

0.1
0.9

β
E

c ρ λ
0
1

0.425
p(c)

0.575
1.0
1.0

0.425
0.575

0.425
0.575

β
C

f ρ λ
0
1

0.531
p(f)

0.469
1.0
1.0

0.531
0.469

0.531
0.469

β
F

g ρ λ
0
1

0.419
p(g)

0.581
1.0
1.0

0.419
0.581

0.419
0.581

β
G

ρ A C λ C A

1.0
1.0

0.3
0.7

a
0
1

ρ A D λ D A

1.0
1.0

0.3
0.7

a
0
1

ρ B D λ D B

1.0
1.0

0.6
0.4

b
0
1

ρ D F λ F D

1.0
1.0

0.462
0.538

d
0
1

ρ D G λ G D

1.0
1.0

0.462
0.538

d
0
1

ρ E G λ G E

1.0
1.0

0.1
0.9

e
0
1
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PROPAGATION IN CLUSTER TREES

1. Absorb E = e in the potential functions Ψ.

2. Obtain a chain of cliques (C1, . . . , Cm) satisfying
the running intersection property. For each clique
Ci, choose as neighbor Cj, with j < i and Si ⊂ Cj.

Iteration Steps:

4. For i = m to 1 (backwards) do

(a) Compute mi(si) = ∑
ri

ψi(ci).

(b) Let p(ri|si) = ψi(ci)/mi(si).
(c) Replace the potential function ψj(cj) of the

neighboring clique Cj of clique Ci by ψj(cj) ←
ψj(cj)mi(si).

5. Let p(c1) = p(r1|s1) = p(r1).

6. For i = 2 to m (forwards) do

(a) Compute p(si) by marginalizing the JPD p(cj)
of the neighboring clique of Ci, Cj.

(b) Let p(ci) = p(ri|si)p(si).

7. For i = 1 to n do

(a) Choose the smallest clique Cj containing Xi.
(b) Let p(xi|e) ∝ ∑

cj\xi

p(cj).
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EXAMPLE OF PROPAGATION
IN CLUSTER TREES

A

B C

D E F

(a) (b)

A

B C

D E F
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